Misplaced Pages

Zinc finger transcription factor

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Zinc Finger Transcription Factor) Transcription factor

Zinc finger transcription factors or ZF-TFs, are transcription factors composed of a zinc finger-binding domain and any of a variety of transcription-factor effector-domains that exert their modulatory effect in the vicinity of any sequence to which the protein domain binds.

Zinc finger protein transcription factors can be encoded by genes small enough to fit a number of such genes into a single vector, allowing the medical intervention and control of expression of multiple genes and the initiation of an elaborate cascade of events. In this respect, it is also possible to target a sequence that is common to multiple (usually functionally related) genes to control the transcription of all these genes with a single transcription factor. Also, it is possible to target a family of related genes by targeting and modulating the expression of the endogenous transcription factor(s) that control(s) them. They also have the advantage that the targeted sequence need not be symmetrical unlike most other DNA-binding motifs based on natural transcription factors that bind as dimers.

Applications

By targeting the ZF-TF toward a specific DNA sequence and attaching the necessary effector domain, it is possible to downregulate or upregulate the expression of the gene(s) in question while using the same DNA-binding domain. The expression of a gene can also be downregulated by blocking elongation by RNA polymerase (without the need for an effector domain) in the coding region or RNA itself can also be targeted. Besides the obvious development of tools for the research of gene function, engineered ZF-TFs have therapeutic potential including correction of abnormal gene expression profiles (e.g., erbB-2 overexpression in human adenocarcinomas) and anti-retrovirals (e.g. HIV-1).

See also

References

  1. ^ Gommans WM, Haisma HJ, Rots MG (2005). "Engineering zinc finger protein transcription factors: the therapeutic relevance of switching endogenous gene expression on or off at command" (PDF). J. Mol. Biol. 354 (3): 507–19. doi:10.1016/j.jmb.2005.06.082. PMID 16253273.
  2. Beerli R, Barbas CF (2002). "Engineering polydactyl zinc-finger transcription factors". Nature Biotechnology. 20 (2): 135–141. doi:10.1038/nbt0202-135. PMID 11821858. S2CID 12685879.
  3. Wu H, Yang WP, Barbas CF (1995). "Building zinc fingers by selection: toward a therapeutic application". Proc. Natl. Acad. Sci. U.S.A. 92 (2): 344–8. Bibcode:1995PNAS...92..344W. doi:10.1073/pnas.92.2.344. PMC 42736. PMID 7831288.
  4. Beerli RR, Dreier B, Barbas CF (2000). "Positive and negative regulation of endogenous genes by designed transcription factors". Proc. Natl. Acad. Sci. U.S.A. 97 (4): 1495–500. Bibcode:2000PNAS...97.1495B. doi:10.1073/pnas.040552697. PMC 26462. PMID 10660690.
  5. Beerli RR, Segal DJ, Dreier B, Barbas CF (1998). "Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks". Proc. Natl. Acad. Sci. U.S.A. 95 (25): 14628–33. Bibcode:1998PNAS...9514628B. doi:10.1073/pnas.95.25.14628. PMC 24500. PMID 9843940.
  6. Segal DJ, Gonçalves J, Eberhardy S, et al. (2004). "Attenuation of HIV-1 replication in primary human cells with a designed zinc finger transcription factor". J. Biol. Chem. 279 (15): 14509–19. doi:10.1074/jbc.M400349200. PMID 14734553.
Transcription factors and intracellular receptors
(1) Basic domains
(1.1) Basic leucine zipper (bZIP)
(1.2) Basic helix-loop-helix (bHLH)
Group A
Group B
Group C
bHLH-PAS
Group D
Group E
Group F
bHLH-COE
(1.3) bHLH-ZIP
(1.4) NF-1
(1.5) RF-X
(1.6) Basic helix-span-helix (bHSH)
(2) Zinc finger DNA-binding domains
(2.1) Nuclear receptor (Cys4)
subfamily 1
subfamily 2
subfamily 3
subfamily 4
subfamily 5
subfamily 6
subfamily 0
(2.2) Other Cys4
(2.3) Cys2His2
(2.4) Cys6
(2.5) Alternating composition
(2.6) WRKY
(3) Helix-turn-helix domains
(3.1) Homeodomain
Antennapedia
ANTP class
protoHOX
Hox-like
metaHOX
NK-like
other
(3.2) Paired box
(3.3) Fork head / winged helix
(3.4) Heat shock factors
(3.5) Tryptophan clusters
(3.6) TEA domain
  • transcriptional enhancer factor
(4) β-Scaffold factors with minor groove contacts
(4.1) Rel homology region
(4.2) STAT
(4.3) p53-like
(4.4) MADS box
(4.6) TATA-binding proteins
(4.7) High-mobility group
(4.9) Grainyhead
(4.10) Cold-shock domain
(4.11) Runt
(0) Other transcription factors
(0.2) HMGI(Y)
(0.3) Pocket domain
(0.5) AP-2/EREBP-related factors
(0.6) Miscellaneous
see also transcription factor/coregulator deficiencies
Antiviral drugs: antiretroviral drugs used against HIV (primarily J05)
Capsid inhibitors
Entry/fusion inhibitors
(Discovery and development)
Integrase inhibitors
(Integrase strand transfer inhibitors (INSTI))
Maturation inhibitors
Protease Inhibitors (PI)
(Discovery and development)
1 generation
2 generation
Reverse-transcriptase
inhibitors
(RTIs)
Nucleoside and
nucleotide (NRTI)
Non-nucleoside (NNRTI)
(Discovery and development)
1 generation
2 generation
Combined formulations
Pharmacokinetic boosters
Experimental agents
Uncoating inhibitors
Transcription inhibitors
Translation inhibitors
BNAbs
Other
Failed agents
°DHHS recommended initial regimen options. Formerly or rarely used agent.
Categories: