Misplaced Pages

Isotopes of zirconium

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Zr-93)

Isotopes of zirconium (40Zr)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
Zr synth 83.4 d ε Y
γ
Zr synth 78.4 h ε Y
β Y
γ
Zr 51.5% stable
Zr 11.2% stable
Zr 17.1% stable
Zr trace 1.53×10 y β Nb
Zr 17.4% stable
Zr synth 64.032 d β Nb
Zr 2.80% 2.34×10 y ββ Mo
Standard atomic weight Ar°(Zr)

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×10 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×10 years. The second most stable radioisotope is Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for Zr (64.02 days), Zr (83.4 days), and Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than Zr, and the primary mode for heavier isotopes is beta decay.

List of isotopes


Nuclide
Z N Isotopic mass (Da)
Half-life
Decay
mode

Daughter
isotope

Spin and
parity
Natural abundance (mole fraction)
Excitation energy Normal proportion Range of variation
Zr 40 37 76.96608(43)# 100# μs 3/2−#
Zr 40 38 77.95523(54)# 50# ms
0+
Zr 40 39 78.94916(43)# 56(30) ms β, p Sr 5/2+#
β Y
Zr 40 40 79.9404(16) 4.6(6) s β Y 0+
Zr 40 41 80.93721(18) 5.5(4) s β (>99.9%) Y (3/2−)#
β, p (<.1%) Sr
Zr 40 42 81.93109(24)# 32(5) s β Y 0+
Zr 40 43 82.92865(10) 41.6(24) s β (>99.9%) Y (1/2−)#
β, p (<.1%) Sr
Zr 40 44 83.92325(21)# 25.9(7) min β Y 0+
Zr 40 45 84.92147(11) 7.86(4) min β Y 7/2+
Zr 292.2(3) keV 10.9(3) s IT (92%) Zr (1/2−)
β (8%) Y
Zr 40 46 85.91647(3) 16.5(1) h β Y 0+
Zr 40 47 86.914816(9) 1.68(1) h β Y (9/2)+
Zr 335.84(19) keV 14.0(2) s IT Zr (1/2)−
Zr 40 48 87.910227(11) 83.4(3) d EC Y 0+
Zr 40 49 88.908890(4) 78.41(12) h β Y 9/2+
Zr 587.82(10) keV 4.161(17) min IT (93.77%) Zr 1/2−
β (6.23%) Y
Zr 40 50 89.9047044(25) Stable 0+ 0.5145(40)
Zr 2319.000(10) keV 809.2(20) ms IT Zr 5-
Zr 3589.419(16) keV 131(4) ns 8+
Zr 40 51 90.9056458(25) Stable 5/2+ 0.1122(5)
Zr 3167.3(4) keV 4.35(14) μs (21/2+)
Zr 40 52 91.9050408(25) Stable 0+ 0.1715(8)
Zr 40 53 92.9064760(25) 1.53(10)×10 y β (73%) Nb 5/2+
β (27%) Nb
Zr 40 54 93.9063152(26) Observationally stable 0+ 0.1738(28)
Zr 40 55 94.9080426(26) 64.032(6) d β Nb 5/2+
Zr 40 56 95.9082734(30) 2.0(4)×10 y ββ Mo 0+ 0.0280(9)
Zr 40 57 96.9109531(30) 16.744(11) h β Nb 1/2+
Zr 40 58 97.912735(21) 30.7(4) s β Nb 0+
Zr 40 59 98.916512(22) 2.1(1) s β Nb 1/2+
Zr 40 60 99.91776(4) 7.1(4) s β Nb 0+
Zr 40 61 100.92114(3) 2.3(1) s β Nb 3/2+
Zr 40 62 101.92298(5) 2.9(2) s β Nb 0+
Zr 40 63 102.92660(12) 1.3(1) s β Nb (5/2−)
Zr 40 64 103.92878(43)# 1.2(3) s β Nb 0+
Zr 40 65 104.93305(43)# 0.6(1) s β (>99.9%) Nb
β, n (<.1%) Nb
Zr 40 66 105.93591(54)# 200# ms
β Nb 0+
Zr 40 67 106.94075(32)# 150# ms
β Nb
Zr 40 68 107.94396(64)# 80# ms
β Nb 0+
Zr 40 69 108.94924(54)# 60# ms
Zr 40 70 109.95287(86)# 30# ms
0+
Zr 40 71
Zr 40 72 0+
Zr 40 73
Zr 40 74 0+
This table header & footer:
  1. Zr – Excited nuclear isomer.
  2. ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. Bold half-life – nearly stable, half-life longer than age of universe.
  5. ^ # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  6. Bold symbol as daughter – Daughter product is stable.
  7. ( ) spin value – Indicates spin with weak assignment arguments.
  8. Second most powerful known neutron absorber
  9. ^ Fission product
  10. Long-lived fission product
  11. Believed to decay by ββ to Mo with a half-life over 1.1×10 years
  12. Primordial radionuclide
  13. Predicted to be capable of undergoing triple beta decay and quadruple beta decay with very long partial half-lives
  14. Theorized to also undergo β decay to Nb with a partial half-life greater than 2.4×10 y

Zirconium-88

Zr is a radioisotope of zirconium with a half-life of 83.4 days. In January 2019, this isotope was discovered to have a neutron capture cross section of approximately 861,000 barns; this is several orders of magnitude greater than predicted, and greater than that of any other nuclide except xenon-135.

Zirconium-89

Zr is a radioisotope of zirconium with a half-life of 78.41 hours. It is produced by proton irradiation of natural yttrium-89. Its most prominent gamma photon has an energy of 909 keV.

Zirconium-89 is employed in specialized diagnostic applications using positron emission tomography imaging, for example, with zirconium-89 labeled antibodies (immuno-PET). For a decay table, see Maria Vosjan. "Zirconium-89 (Zr)". Cyclotron.nl.

Zirconium-93

Yield, % per fission
Thermal Fast 14 MeV
Th not fissile 6.70 ± 0.40 5.58 ± 0.16
U 6.979 ± 0.098 6.94 ± 0.07 5.38 ± 0.32
U 6.346 ± 0.044 6.25 ± 0.04 5.19 ± 0.31
U not fissile 4.913 ± 0.098 4.53 ± 0.13
Pu 3.80 ± 0.03 3.82 ± 0.03 3.0 ± 0.3
Pu 2.98 ± 0.04 2.98 ± 0.33 ?
Long-lived fission products
Nuclide t1⁄2 Yield Q βγ
(Ma) (%) (keV)
Tc 0.211 6.1385 294 β
Sn 0.230 0.1084 4050 βγ
Se 0.327 0.0447 151 β
Cs 1.33  6.9110 269 β
Zr 1.53  5.4575 91 βγ
Pd 6.5   1.2499 33 β
I 16.14   0.8410 194 βγ
  1. Decay energy is split among β, neutrino, and γ if any.
  2. Per 65 thermal neutron fissions of U and 35 of Pu.
  3. Has decay energy 380 keV, but its decay product Sb has decay energy 3.67 MeV.
  4. Lower in thermal reactors because Xe, its predecessor, readily absorbs neutrons.

Zr is a radioisotope of zirconium with a half-life of 1.53 million years, decaying through emission of a low-energy beta particle. 73% of decays populate an excited state of niobium-93, which decays with a half-life of 14 years and a low-energy gamma ray to the stable ground state of Nb, while the remaining 27% of decays directly populate the ground state. It is one of only 7 long-lived fission products. The low specific activity and low energy of its radiations limit the radioactive hazards of this isotope.

Nuclear fission produces it at a fission yield of 6.3% (thermal neutron fission of U), on a par with the other most abundant fission products. Nuclear reactors usually contain large amounts of zirconium as fuel rod cladding (see zircaloy), and neutron irradiation of Zr also produces some Zr, though this is limited by Zr's low neutron capture cross section of 0.22 barns. Indeed, one of the primary reasons for using zirconium in fuel rod cladding is its low cross section.

Zr also has a low neutron capture cross section of 0.7 barns. Most fission zirconium consists of other isotopes; the other isotope with a significant neutron absorption cross section is Zr with a cross section of 1.24 barns. Zr is a less attractive candidate for disposal by nuclear transmutation than are Tc and I. Mobility in soil is relatively low, so that geological disposal may be an adequate solution. Alternatively, if the effect on the neutron economy of
Zr's higher cross section is deemed acceptable, irradiated cladding and fission product Zirconium (which are mixed together in most current nuclear reprocessing methods) could be used to form new zircalloy cladding. Once the cladding is inside the reactor, the relatively low level radioactivity can be tolerated, but transport and manufacturing might require special precautions.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Zirconium". CIAAW. 2024.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
  4. "List of Adopted Double Beta (ββ) Decay Values". National Nuclear Data Center, Brookhaven National Laboratory.
  5. H Heiskanen; M T Mustonen; J Suhonen (30 March 2007). "Theoretical half-life for beta decay of Zr". Journal of Physics G: Nuclear and Particle Physics. 34 (5): 837–843. doi:10.1088/0954-3899/34/5/005.
  6. Finch, S.W.; Tornow, W. (2016). "Search for the β decay of Zr". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 806: 70–74. Bibcode:2016NIMPA.806...70F. doi:10.1016/j.nima.2015.09.098.
  7. ^ Ohnishi, Tetsuya; Kubo, Toshiyuki; Kusaka, Kensuke; et al. (2010). "Identification of 45 New Neutron-Rich Isotopes Produced by In-Flight Fission of a U Beam at 345 MeV/nucleon". J. Phys. Soc. Jpn. 79 (7). Physical Society of Japan: 073201. arXiv:1006.0305. Bibcode:2010JPSJ...79g3201T. doi:10.1143/JPSJ.79.073201.
  8. Shimizu, Yohei; et al. (2018). "Observation of New Neutron-rich Isotopes among Fission Fragments from In-flight Fission of 345MeV=nucleon 238U: Search for New Isotopes Conducted Concurrently with Decay Measurement Campaigns". Journal of the Physical Society of Japan. 87 (1): 014203. Bibcode:2018JPSJ...87a4203S. doi:10.7566/JPSJ.87.014203.
  9. Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
  10. Shusterman, J.A.; Scielzo, N.D.; Thomas, K.J.; Norman, E.B.; Lapi, S.E.; Loveless, C.S.; Peters, N.J.; Robertson, J.D.; Shaughnessy, D.A.; Tonchev, A.P. (2019). "The surprisingly large neutron capture cross-section of Zr". Nature. 565 (7739): 328–330. Bibcode:2019Natur.565..328S. doi:10.1038/s41586-018-0838-z. OSTI 1512575. PMID 30617314. S2CID 57574387.
  11. Dilworth, Jonathan R.; Pascu, Sofia I. (2018). "The chemistry of PET imaging with zirconium-89". Chemical Society Reviews. 47 (8): 2554–2571. doi:10.1039/C7CS00014F. PMID 29557435.
  12. Van Dongen, GA; Vosjan, MJ (August 2010). "Immuno-positron emission tomography: shedding light on clinical antibody therapy". Cancer Biotherapy and Radiopharmaceuticals. 25 (4): 375–85. doi:10.1089/cbr.2010.0812. PMID 20707716.
  13. M. B. Chadwick et al, "ENDF/B-VII.1: Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data", Nucl. Data Sheets 112(2011)2887. (accessed at www-nds.iaea.org/exfor/endf.htm)
  14. Cassette, P.; Chartier, F.; Isnard, H.; Fréchou, C.; Laszak, I.; Degros, J.P.; Bé, M.M.; Lépy, M.C.; Tartes, I. (2010). "Determination of Zr decay scheme and half-life". Applied Radiation and Isotopes. 68 (1): 122–130. doi:10.1016/j.apradiso.2009.08.011. PMID 19734052.
  15. "ENDF/B-VII.1 Zr-93(n,g)". National Nuclear Data Center, Brookhaven National Laboratory. 2011-12-22. Archived from the original on 2009-07-20. Retrieved 2014-11-20.
  16. S. Nakamura; et al. (2007). "Thermal neutron capture cross-sections of Zirconium-91 and Zirconium-93 by prompt gamma-ray spectroscopy". Journal of Nuclear Science and Technology. 44 (1): 21–28. Bibcode:2007JNST...44...21N. doi:10.1080/18811248.2007.9711252. S2CID 96087661.
Isotopes of the chemical elements
Group 1 2   3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
Period Hydrogen and
alkali metals
Alkaline
earth metals
Pnicto­gens Chal­co­gens Halo­gens Noble gases
Isotopes § ListH1 Isotopes § ListHe2
Isotopes § ListLi3 Isotopes § ListBe4 Isotopes § ListB5 Isotopes § ListC6 Isotopes § ListN7 Isotopes § ListO8 Isotopes § ListF9 Isotopes § ListNe10
Isotopes § ListNa11 Isotopes § ListMg12 Isotopes § ListAl13 Isotopes § ListSi14 Isotopes § ListP15 Isotopes § ListS16 Isotopes § ListCl17 Isotopes § ListAr18
Isotopes § ListK19 Isotopes § ListCa20 Isotopes § ListSc21 Isotopes § ListTi22 Isotopes § ListV23 Isotopes § ListCr24 Isotopes § ListMn25 Isotopes § ListFe26 Isotopes § ListCo27 Isotopes § ListNi28 Isotopes § ListCu29 Isotopes § ListZn30 Isotopes § ListGa31 Isotopes § ListGe32 Isotopes § ListAs33 Isotopes § ListSe34 Isotopes § ListBr35 Isotopes § ListKr36
Isotopes § ListRb37 Isotopes § ListSr38 Isotopes § ListY39 Isotopes § ListZr40 Isotopes § ListNb41 Isotopes § ListMo42 Isotopes § ListTc43 Isotopes § ListRu44 Isotopes § ListRh45 Isotopes § ListPd46 Isotopes § ListAg47 Isotopes § ListCd48 Isotopes § ListIn49 Isotopes § ListSn50 Isotopes § ListSb51 Isotopes § ListTe52 Isotopes § ListI53 Isotopes § ListXe54
Isotopes § ListCs55 Isotopes § ListBa56 1 asterisk Isotopes § ListLu71 Isotopes § ListHf72 Isotopes § ListTa73 Isotopes § ListW74 Isotopes § ListRe75 Isotopes § ListOs76 Isotopes § ListIr77 Isotopes § ListPt78 Isotopes § ListAu79 Isotopes § ListHg80 Isotopes § ListTl81 Isotopes § ListPb82 Isotopes § ListBi83 Isotopes § ListPo84 Isotopes § ListAt85 Isotopes § ListRn86
Isotopes § ListFr87 Isotopes § ListRa88 1 asterisk Isotopes § ListLr103 Isotopes § ListRf104 Isotopes § ListDb105 Isotopes § ListSg106 Isotopes § ListBh107 Isotopes § ListHs108 Isotopes § ListMt109 Isotopes § ListDs110 Isotopes § ListRg111 Isotopes § ListCn112 Isotopes § ListNh113 Isotopes § ListFl114 Isotopes § ListMc115 Isotopes § ListLv116 Isotopes § ListTs117 Isotopes § ListOg118
Isotopes § ListUue119 Isotopes § ListUbn120
1 asterisk Isotopes § ListLa57 Isotopes § ListCe58 Isotopes § ListPr59 Isotopes § ListNd60 Isotopes § ListPm61 Isotopes § ListSm62 Isotopes § ListEu63 Isotopes § ListGd64 Isotopes § ListTb65 Isotopes § ListDy66 Isotopes § ListHo67 Isotopes § ListEr68 Isotopes § ListTm69 Isotopes § ListYb70  
1 asterisk Isotopes § ListAc89 Isotopes § ListTh90 Isotopes § ListPa91 Isotopes § ListU92 Isotopes § ListNp93 Isotopes § ListPu94 Isotopes § ListAm95 Isotopes § ListCm96 Isotopes § ListBk97 Isotopes § ListCf98 Isotopes § ListEs99 Isotopes § ListFm100 Isotopes § ListMd101 Isotopes § ListNo102
Categories: