Misplaced Pages

p-Coumaric acid

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from P-coumaroyl)
p-Coumaric acid
Skeletal formula of p-coumaric acid
Ball-and-stick model of p-coumaric acid
Names
Preferred IUPAC name (2E)-3-(4-Hydroxyphenyl)prop-2-enoic acid
Other names (E)-3-(4-Hydroxyphenyl)-2-propenoic acid
(E)-3-(4-Hydroxyphenyl)acrylic acid
para-Coumaric acid
4-Hydroxycinnamic acid
β-(4-Hydroxyphenyl)acrylic acid
Identifiers
CAS Number
3D model (JSmol)
Beilstein Reference 2207383
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.116.210 Edit this at Wikidata
EC Number
  • 231-000-0
Gmelin Reference 2245630
IUPHAR/BPS
KEGG
PubChem CID
UNII
CompTox Dashboard (EPA)
InChI
  • InChI=1S/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3+Key: NGSWKAQJJWESNS-ZZXKWVIFSA-N
  • InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11, 12)/b6-3+/f/h11H
  • InChI=1/C9H8O3/c10-8-4-1-7(2-5-8)3-6-9(11)12/h1-6,10H,(H,11,12)/b6-3+Key: NGSWKAQJJWESNS-ZZXKWVIFBJ
SMILES
  • C1=CC(=CC=C1\C=C\C(=O)O)O
  • c1cc(ccc1/C=C/C(=O)O)O
Properties
Chemical formula C9H8O3
Molar mass 164.160 g·mol
Melting point 210 to 213 °C (410 to 415 °F; 483 to 486 K)
Hazards
GHS labelling:
Pictograms GHS05: CorrosiveGHS06: ToxicGHS07: Exclamation mark
Signal word Danger
Hazard statements H301, H302, H311, H314, H315, H317, H319, H335
Precautionary statements P260, P261, P264, P270, P271, P272, P280, P301+P310, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P332+P313, P333+P313, P337+P313, P361, P362, P363, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa). Infobox references
Chemical compound

p-Coumaric acid is an organic compound with the formula HOC6H4CH=CHCO2H. It is one of the three isomers of hydroxycinnamic acid. It is a white solid that is only slightly soluble in water but very soluble in ethanol and diethyl ether.

Natural occurrences

It is a precursor to many natural products, especially lignols, precursors to the woody mass that comprise many plants. Of the myriad occurrences, p-coumaric acid can be found in Gnetum cleistostachyum.

In food

p-Coumaric acid can be found in a wide variety of edible plants and fungi such as peanuts, navy beans, tomatoes, carrots, basil and garlic. It is found in wine and vinegar. It is also found in barley grain.

p-Coumaric acid from pollen is a constituent of honey.

Derivatives

p-Coumaric acid glucoside can also be found in commercial breads containing flaxseed. Diesters of p-coumaric acid can be found in carnauba wax.

Biosynthesis

It is biosynthesized from cinnamic acid by the action of the P450-dependent enzyme 4-cinnamic acid hydroxylase (C4H).

cinnamic acid   C 4 H {\displaystyle {\begin{matrix}{}\\{\xrightarrow {\mathrm {C4H} }}\\{}\end{matrix}}}  para-coumaric acid

It is also produced from L-tyrosine by the action of tyrosine ammonia lyase (TAL).

L-Tyrosine   T A L {\displaystyle {\xrightarrow {\mathrm {TAL} }}}  para-coumaric acid + NH3 + H

Biosynthetic building block

p-Coumaric acid is the precursor of 4-ethylphenol produced by the yeast Brettanomyces in wine. The enzyme cinnamate decarboxylase catalyzes the conversion of p-coumaric acid into 4-vinylphenol. Vinyl phenol reductase then catalyzes the reduction of 4-vinylphenol to 4-ethylphenol. Coumaric acid is sometimes added to microbiological media, enabling the positive identification of Brettanomyces by smell.

The conversion of p-coumaric acid to 4-ethyphenol by Brettanomyces

cis-p-Coumarate glucosyltransferase is an enzyme that uses uridine diphosphate glucose and cis-p-coumarate to produce 4′-O-β-D-glucosyl-cis-p-coumarate and uridine diphosphate (UDP). This enzyme belongs to the family of glycosyltransferases, specifically the hexosyltransferases.

Phloretic acid, found in the rumen of sheep fed with dried grass, is produced by hydrogenation of the 2-propenoic side chain of p-coumaric acid.

The enzyme, resveratrol synthase, also known as stilbene synthase, catalyzes the synthesis of resveratrol ultimately from a tetraketide derived from 4-coumaroyl CoA.

p-Coumaric acid is a cofactor of photoactive yellow proteins (PYP), a homologous group of proteins found in many eubacteria.

p-Coumaric acid is found as the base moiety of Caleicine, one of many sesquiterpenes in Calea ternifolia.

See also

References

  1. Wout Boerjan, John Ralph, Marie Baucher "Lignin Biosynthesis" Annu. Rev. Plant Biol. 2003, vol. 54, pp. 519–46. doi:10.1146/annurev.arplant.54.031902.134938
  2. Yao CS, Lin M, Liu X, Wang YH (April 2005). "Stilbene derivatives from Gnetum cleistostachyum". Journal of Asian Natural Products Research. 7 (2): 131–7. doi:10.1080/10286020310001625102. PMID 15621615. S2CID 37661785.
  3. Gálvez MC, Barroso CG, Pérez-Bustamante JA (1994). "Analysis of polyphenolic compounds of different vinegar samples". Zeitschrift für Lebensmittel-Untersuchung und -Forschung. 199: 29–31. doi:10.1007/BF01192948. S2CID 91784893.
  4. Quinde-Axtell Z, Baik BK (December 2006). "Phenolic compounds of barley grain and their implication in food product discoloration". Journal of Agricultural and Food Chemistry. 54 (26): 9978–84. doi:10.1021/jf060974w. PMID 17177530.
  5. Mao W, Schuler MA, Berenbaum MR (May 2013). "Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera". Proceedings of the National Academy of Sciences of the United States of America. 110 (22): 8842–6. Bibcode:2013PNAS..110.8842M. doi:10.1073/pnas.1303884110. PMC 3670375. PMID 23630255.
  6. Strandås C, Kamal-Eldin A, Andersson R, Åman P (October 2008). "Phenolic glucosides in bread containing flaxseed". Food Chemistry. 110 (4): 997–9. doi:10.1016/j.foodchem.2008.02.088. PMID 26047292.
  7. "Brettanomyces Monitoring by Analysis of 4-ethylphenol and 4-ethylguaiacol". etslabs.com. Archived from the original on 2008-02-19.
  8. Rasmussen S, Rudolph H (1997). "Isolation, purification and characterization of UDP-glucose: cis-p-coumaric acid-β-D-glucosyltransferase from sphagnum fallax". Phytochemistry. 46 (3): 449–453. doi:10.1016/S0031-9422(97)00337-3.
  9. Chesson A, Stewart CS, Wallace RJ (September 1982). "Influence of plant phenolic acids on growth and cellulolytic activity of rumen bacteria". Applied and Environmental Microbiology. 44 (3): 597–603. Bibcode:1982ApEnM..44..597C. doi:10.1128/aem.44.3.597-603.1982. PMC 242064. PMID 16346090.
  10. Wang, Chuanhong; Zhi, Shuang; Liu, Changying; Xu, Fengxiang; Zhao, Aichun; Wang, Xiling; Ren, Yanhong; Li, Zhengang; Yu, Maode (2017). "Characterization of Stilbene Synthase Genes in Mulberry (Morus atropurpurea) and Metabolic Engineering for the Production of Resveratrol in Escherichia coli". Journal of Agricultural and Food Chemistry. 65 (8): 1659–1668. doi:10.1021/acs.jafc.6b05212. PMID 28168876.
  11. Hoff WD, Düx P, Hård K, Devreese B, Nugteren-Roodzant IM, Crielaard W, Boelens R, Kaptein R, van Beeumen J, Hellingwerf KJ (November 1994). "Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry". Biochemistry. 33 (47): 13959–62. doi:10.1021/bi00251a001. PMID 7947803.
Types of hydroxycinnamic acids
Aglycones
Precursor
Monohydroxycinnamic acids
(Coumaric acids)
Dihydroxycinnamic acids
Trihydroxycinnamic acids
O-methylated forms
others
Esters
glycoside-likes
Esters of
caffeic acid
with cyclitols
esters of
quinic acid
esters of
shikimic acid
Glycosides
Tartaric acid esters
Other esters
with caffeic acid
Caffeoyl phenylethanoid
glycoside (CPG)
Oligomeric forms
Dimers
Trimers
Tetramers
Conjugates with
coenzyme A (CoA)
Categories: