Misplaced Pages

Aldebaran

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
(Redirected from Aldebaran in fiction) Star in the constellation Taurus For other uses, see Aldebaran (disambiguation). Not to be confused with Alderaan or A Tauri. "Alpha Tauri" redirects here. For other uses, see AlphaTauri.
Aldebaran
Location of Aldebaran (circled)
Observation data
Epoch J2000.0      Equinox J2000.0
Constellation Taurus
Pronunciation /ælˈdɛbərən/
Right ascension 04 35 55.23907
Declination +16° 30′ 33.4885″
Apparent magnitude (V) 0.86 (0.75–0.95)
Characteristics
Evolutionary stage Red giant branch
Spectral type K5+ III
Apparent magnitude (J) −2.095
U−B color index +1.92
B−V color index +1.44
Variable type LB
Astrometry
Radial velocity (Rv)+54.26±0.03 km/s
Proper motion (μ) RA: 63.45±0.84 mas/yr
Dec.: −188.94±0.65 mas/yr
Parallax (π)49.97 ± 0.75 mas
Distance65.3 ± 1.0 ly
(20.0 ± 0.3 pc)
Absolute magnitude (MV)−0.641±0.034
Details
Mass1.16±0.07 M
Radius45.1±0.1 R
Luminosity439±17 L
Surface gravity (log g)1.45±0.3 cgs
Temperature3,900±50 K
Metallicity −0.33±0.1 dex
Rotation520 days
Rotational velocity (v sin i)3.5±1.5 km/s
Age6.4+1.4
−1.1 Gyr
Other designations
Alpha Tau, α Tau, 87 Tauri, BD+16°629, GJ 171.1, 9159, HD 29139, HIP 21421, HR 1457, SAO 94027
Database references
SIMBADdata
ARICNSdata

Aldebaran (Arabic: الدَّبَران, lit.'The Follower') (Proto-Semitic *dVbr- “bee”) is a star located in the zodiac constellation of Taurus. It has the Bayer designation α Tauri, which is Latinized to Alpha Tauri and abbreviated Alpha Tau or α Tau. Aldebaran varies in brightness from an apparent visual magnitude 0.75 down to 0.95, making it the brightest star in the constellation, as well as (typically) the fourteenth-brightest star in the night sky. It is positioned at a distance of approximately 65 light-years from the Sun. The star lies along the line of sight to the nearby Hyades cluster.

Aldebaran is a red giant, meaning that it is cooler than the Sun with a surface temperature of 3,900 K, but its radius is about 45 times the Sun's, so it is over 400 times as luminous. As a giant star, it has moved off the main sequence on the Hertzsprung–Russell diagram after depleting its supply of hydrogen in the core. The star spins slowly and takes 520 days to complete a rotation. Aldebaran is believed to host a planet several times the mass of Jupiter, named Aldebaran b.

Nomenclature

Aldebaran is the brightest star in the constellation of Taurus (center).

The traditional name Aldebaran derives from the Arabic al Dabarān (الدبران), meaning 'the follower', because it seems to follow the Pleiades. In 2016, the International Astronomical Union Working Group on Star Names (WGSN) approved the proper name Aldebaran for this star.

Aldebaran is the brightest star in the constellation Taurus, with the Bayer designation α Tauri, latinised as Alpha Tauri. It has the Flamsteed designation 87 Tauri as the 87th star in the constellation of approximately 7th magnitude or brighter, ordered by right ascension. It also has the Bright Star Catalogue number 1457, the HD number 29139, and the Hipparcos catalogue number 21421, mostly seen in scientific publications.

It is a variable star listed in the General Catalogue of Variable Stars, but it is listed using its Bayer designation and does not have a separate variable star designation.

Aldebaran and several nearby stars are included in double star catalogues such as the Washington Double Star Catalog as WDS 04359+1631 and the Aitken Double Star Catalogue as ADS 3321. It was included with an 11th-magnitude companion as a double star as H IV 66 in the Herschel Catalogue of Double Stars and Σ II 2 in the Struve Double Star Catalog, and together with a 14th-magnitude star as β 550 in the Burnham Double Star Catalogue.

Observation

Aldebaran in the Hyades

Aldebaran is one of the easiest stars to find in the night sky, partly due to its brightness and partly due to being near one of the more noticeable asterisms in the sky. Following the three stars of Orion's belt in the direction opposite to Sirius, the first bright star encountered is Aldebaran. It is best seen at midnight between late November and early December.

The star is, by chance, in the line of sight between the Earth and the Hyades, so it has the appearance of being the brightest member of the open cluster, but the cluster that forms the bull's-head-shaped asterism is more than twice as far away, at about 150 light years.

Aldebaran is 5.47 degrees south of the ecliptic and so can be occulted by the Moon. Such occultations occur when the Moon's ascending node is near the autumnal equinox. A series of 49 occultations occurred starting on 29 January 2015 and ending at 3 September 2018. Each event was visible from points in the northern hemisphere or close to the equator; people in e.g. Australia or South Africa can never observe an Aldebaran occultation since it is too far south of the ecliptic. A reasonably accurate estimate for the diameter of Aldebaran was obtained during the occultation of 22 September 1978. In the 2020s, Aldebaran is in conjunction in ecliptic longitude with the sun around May 30 of each year.

With a near-infrared J band magnitude of −2.1, only Betelgeuse (−2.9), R Doradus (−2.6), and Arcturus (−2.2) are brighter at that wavelength.

Observational history

Occultation of Aldebaran by the Moon. Aldebaran is the red dot to the right, barely visible in the thumbnail.

On 11 March AD 509, a lunar occultation of Aldebaran was observed in Athens, Greece. English astronomer Edmund Halley studied the timing of this event, and in 1718 concluded that Aldebaran must have changed position since that time, moving several minutes of arc further to the north. This, as well as observations of the changing positions of stars Sirius and Arcturus, led to the discovery of proper motion. Based on present day observations, the position of Aldebaran has shifted 7′ in the last 2000 years; roughly a quarter the diameter of the full moon. Due to precession of the equinoxes, 5,000 years ago the vernal equinox was close to Aldebaran. Between 420,000 and 210,000 years ago, Aldebaran was the brightest star in the night sky, peaking in brightness 320,000 years ago with an apparent magnitude of −1.54.

English astronomer William Herschel discovered a faint companion to Aldebaran in 1782; an 11th-magnitude star at an angular separation of 117. This star was shown to be itself a close double star by S. W. Burnham in 1888, and he discovered an additional 14th-magnitude companion at an angular separation of 31″. Follow-on measurements of proper motion showed that Herschel's companion was diverging from Aldebaran, and hence they were not physically connected. However, the companion discovered by Burnham had almost exactly the same proper motion as Aldebaran, suggesting that the two formed a wide binary star system.

Working at his private observatory in Tulse Hill, England, in 1864 William Huggins performed the first studies of the spectrum of Aldebaran, where he was able to identify the lines of nine elements, including iron, sodium, calcium, and magnesium. In 1886, Edward C. Pickering at the Harvard College Observatory used a photographic plate to capture fifty absorption lines in the spectrum of Aldebaran. This became part of the Draper Catalogue, published in 1890. By 1887, the photographic technique had improved to the point that it was possible to measure a star's radial velocity from the amount of Doppler shift in the spectrum. By this means, the recession velocity of Aldebaran was estimated as 30 miles per second (48 km/s), using measurements performed at Potsdam Observatory by Hermann C. Vogel and his assistant Julius Scheiner.

Aldebaran was observed using an interferometer attached to the Hooker Telescope at the Mount Wilson Observatory in 1921 in order to measure its angular diameter, but it was not resolved in these observations.

The extensive history of observations of Aldebaran led to it being included in the list of 33 stars chosen as benchmarks for the Gaia mission to calibrate derived stellar parameters. It had previously been used to calibrate instruments on board the Hubble Space Telescope.

Physical characteristics

Size comparison between Aldebaran and the Sun

Aldebaran is listed as the spectral standard for type K5+ III stars. Its spectrum shows that it is a giant star that has evolved off the main sequence band of the HR diagram after exhausting the hydrogen at its core. The collapse of the center of the star into a degenerate helium core has ignited a shell of hydrogen outside the core and Aldebaran is now on the red giant branch (RGB).

The effective temperature of Aldebaran's photosphere is 3,910 K. It has a surface gravity of 1.59 cgs, typical for a giant star, but around 25 times lower than the Earth's and 700 times lower than the Sun's. Its metallicity is about 30% lower than the Sun's.

Measurements by the Hipparcos satellite and other sources put Aldebaran around 65.3 light-years (20.0 parsecs) away. Asteroseismology has determined that it is about 16% more massive than the Sun, yet it shines with 518 times the Sun's luminosity due to the expanded radius. The angular diameter of Aldebaran has been measured many times. The value adopted as part of the Gaia benchmark calibration is 20.580±0.030 mas. It is 44 times the diameter of the Sun, approximately 61 million kilometres.

Aldebaran is a slightly variable star, assigned to the slow irregular type LB. The General Catalogue of Variable Stars indicates variation between apparent magnitude 0.75 and 0.95 from historical reports. Modern studies show a smaller amplitude, with some showing almost no variation. Hipparcos photometry shows an amplitude of only about 0.02 magnitudes and a possible period around 18 days. Intensive ground-based photometry showed variations of up to 0.03 magnitudes and a possible period around 91 days. Analysis of observations over a much longer period still find a total amplitude likely to be less than 0.1 magnitudes, and the variation is considered to be irregular.

The photosphere shows abundances of carbon, oxygen, and nitrogen that suggest the giant has gone through its first dredge-up stage—a normal step in the evolution of a star into a red giant during which material from deep within the star is brought up to the surface by convection. With its slow rotation, Aldebaran lacks a dynamo needed to generate a corona and hence is not a source of hard X-ray emission. However, small scale magnetic fields may still be present in the lower atmosphere, resulting from convection turbulence near the surface. The measured strength of the magnetic field on Aldebaran is 0.22 G. Any resulting soft X-ray emissions from this region may be attenuated by the chromosphere, although ultraviolet emission has been detected in the spectrum. The star is currently losing mass at a rate of (1–1.6)×10 M/yr (about one Earth mass in 300,000 years) with a velocity of 30 km/s. This stellar wind may be generated by the weak magnetic fields in the lower atmosphere.

Beyond the chromosphere of Aldebaran is an extended molecular outer atmosphere (MOLsphere) where the temperature is cool enough for molecules of gas to form. This region lies at about 2.5 times the radius of the star and has a temperature of about 1,500 K. The spectrum reveals lines of carbon monoxide, water, and titanium oxide. Outside the MOLSphere, the stellar wind continues to expand until it reaches the termination shock boundary with the hot, ionized interstellar medium that dominates the Local Bubble, forming a roughly spherical astrosphere with a radius of around 1000 au, centered on Aldebaran.

Visual companions

Five faint stars appear close to Aldebaran in the sky. These double star components were given upper-case Latin letter designations more or less in the order of their discovery, with the letter A reserved for the primary star. Some characteristics of these components, including their position relative to Aldebaran, are shown in the table.

WDS 04359+1631 catalogue entry
α Tau Apparent
magnitude
Angular
separation
(″)
Position
angle
(°)
Year Parallax (mas)
B 13.60 31.60 113 2007 47.3417±0.1055
C 11.30 129.50 32 2011 19.1267±0.4274
D 13.70
E 12.00 36.10 323 2000
F 13.60 255.70 121 2000 0.1626±0.0369

Some surveys, for example Gaia Data Release 2, have indicated that Alpha Tauri B may have about the same proper motion and parallax as Aldebaran and thus may be a physical binary system. These measurements are difficult, since the dim B component appears so close to the bright primary star, and the margin of error is too large to establish (or exclude) a physical relationship between the two. So far neither the B component, nor anything else, has been unambiguously shown to be physically associated with Aldebaran. The Gaia Data Release 3 again suggest a close distance to Aldebaran and similar proper motions. With a parallax of 47.25 milliarcseconds, this translates into a distance of 21.16 pc (69.0 ly). The NASA Exoplanet Archive recognizes Aldebaran as a binary star, with Aldebaran B being the secondary star. A spectral type of M2.5 has been published for Alpha Tauri B.

Alpha Tauri CD is a binary system with the C and D component stars gravitationally bound to and co-orbiting each other. These co-orbiting stars have been shown to be located far beyond Aldebaran and are members of the Hyades star cluster. As with the rest of the stars in the cluster they do not physically interact with Aldebaran in any way.

Planetary system

Main article: Aldebaran b

In 1993 radial velocity measurements of Aldebaran, Arcturus and Pollux showed that Aldebaran exhibited a long-period radial velocity oscillation, which could be interpreted as a substellar companion. The measurements for Aldebaran implied a companion with a minimum mass 11.4 times that of Jupiter in a 643-day orbit at a separation of 2.0 AU (300 Gm) in a mildly eccentric orbit. However, all three stars surveyed showed similar oscillations yielding similar companion masses, and the authors concluded that the variation was likely to be intrinsic to the star rather than due to the gravitational effect of a companion.

In 2015 a study showed stable long-term evidence for both a planetary companion and stellar activity. An asteroseismic analysis of the residuals to the planet fit has determined that Aldebaran b has a minimum mass of 5.8±0.7 Jupiter masses, and that when the star was on the main sequence it would have given this planet Earth-like levels of illumination and therefore, potentially, temperature. This would place it and any of its moons in the habitable zone. Follow-up study in 2019 have found the evidence for planetary existence inconclusive though.

The planetary system
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b (disputed) 5.8 MJ 1.46±0.27 628.96±0.9 0.1±0.05

Etymology and mythology

Aldebaran was originally نَيِّر اَلدَّبَرَان (Nayyir al-Dabarān in Arabic), meaning 'the bright one of the follower', since it follows the Pleiades; in fact, the Arabs sometimes also applied‍ the name al-Dabarān to the Hyades as a whole. A variety of transliterated spellings have been used, with the current Aldebaran becoming standard relatively recently.

Mythology

This easily seen and striking star in its suggestive asterism is a popular subject for ancient and modern myths.

  • Mexican culture: For the Seris of northwestern Mexico, this star provides light for the seven women giving birth (Pleiades). It has three names: Hant Caalajc Ipápjö, Queeto, and Azoj Yeen oo Caap ('star that goes ahead'). The lunar month corresponding to October is called Queeto yaao 'Aldebaran's path'.
  • Australian Aboriginal culture: amongst indigenous people of the Clarence River, in north-eastern New South Wales, this star is the ancestor Karambal, who stole another man's wife. The woman's husband tracked him down and burned the tree in which he was hiding. It is believed that he rose to the sky as smoke and became the star Aldebaran.
  • Persian culture: Aldebaran is considered one of the 4 "royal stars".

Names in other languages

In modern culture

Italian frigate Aldebaran (F 590)

As the brightest star in a Zodiac constellation, it is given great significance within astrology.

Irish singer and composer Enya has a piece released on her eponymous album in 1986, which lyricist Roma Ryan titled Aldebaran after the star in Taurus.

The name Aldebaran or Alpha Tauri has been adopted many times, including

The star also appears in works of fiction such as Far from the Madding Crowd (1874) and Down and Out in Paris and London (1933). It is frequently seen in science fiction, including the Lensman series (1948–1954), Fallen Dragon (2001) and passingly in Kim Stanley Robinson's "Blue Mars" (1996). Aldebaran is associated with Hastur, also known as The King in Yellow, in the horror stories of Robert W. Chambers.

Aldebaran regularly features in conspiracy theories as one of the origins of extraterrestrial aliens, often linked to Nazi UFOs. A well-known example is the German conspiracy theorist Axel Stoll, who considered the star the home of the Aryan race and the target of expeditions by the Wehrmacht.

The planetary exploration probe Pioneer 10 is no longer powered or in contact with Earth, but its trajectory is taking it in the general direction of Aldebaran. It is expected to make its closest approach in about two million years.

The Austrian chemist Carl Auer von Welsbach proposed the name aldebaranium (chemical symbol Ad) for a rare earth element that he (among others) had found. Today, it is called ytterbium (symbol Yb).

See also

References

  1. "Aldebaran". Oxford Dictionary. Archived from the original on October 29, 2013. Retrieved 2019-01-09.
  2. "Aldebaran". Merriam-Webster. Retrieved 2019-01-09.
  3. ^ Van Leeuwen, F. (2007). "Validation of the new Hipparcos reduction". Astronomy and Astrophysics. 474 (2): 653–664. arXiv:0708.1752. Bibcode:2007A&A...474..653V. doi:10.1051/0004-6361:20078357. S2CID 18759600.
  4. ^ "Query= alf Tau". General Catalogue of Variable Stars. Centre de Données astronomiques de Strasbourg. Archived from the original on 2015-06-09. Retrieved 2009-12-16.
  5. ^ Stock, Stephan; Reffert, Sabine; Quirrenbach, Andreas; Hauschildt, P. (2018). "Precise radial velocities of giant stars. X. Bayesian stellar parameters and evolutionary stages for 372 giant stars from the Lick planet search". Astronomy and Astrophysics. 616: A33. arXiv:1805.04094. Bibcode:2018A&A...616A..33S. doi:10.1051/0004-6361/201833111. S2CID 119361866.
  6. ^ Keenan, Philip C.; McNeil, Raymond C. (1989). "The Perkins Catalog of Revised MK Types for the Cooler Stars". The Astrophysical Journal Supplement Series. 71: 245. Bibcode:1989ApJS...71..245K. doi:10.1086/191373. S2CID 123149047.
  7. ^ Cutri, Roc M.; Skrutskie, Michael F.; Van Dyk, Schuyler D.; Beichman, Charles A.; Carpenter, John M.; Chester, Thomas; Cambresy, Laurent; Evans, Tracey E.; Fowler, John W.; Gizis, John E.; Howard, Elizabeth V.; Huchra, John P.; Jarrett, Thomas H.; Kopan, Eugene L.; Kirkpatrick, J. Davy; Light, Robert M.; Marsh, Kenneth A.; McCallon, Howard L.; Schneider, Stephen E.; Stiening, Rae; Sykes, Matthew J.; Weinberg, Martin D.; Wheaton, William A.; Wheelock, Sherry L.; Zacarias, N. (2003). "VizieR Online Data Catalog: 2MASS All-Sky Catalog of Point Sources (Cutri+ 2003)". CDS/ADC Collection of Electronic Catalogues. 2246: II/246. Bibcode:2003yCat.2246....0C. S2CID 115529446. Archived from the original on 2021-04-21. Retrieved 2021-11-16.
  8. ^ Ducati, J. R. (2002). "VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system". CDS/ADC Collection of Electronic Catalogues. 2237: 0. Bibcode:2002yCat.2237....0D.
  9. Famaey, B.; Jorissen, A.; Luri, X.; Mayor, M.; Udry, S.; Dejonghe, H.; Turon, C. (2005). "Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters". Astronomy and Astrophysics. 430: 165–186. arXiv:astro-ph/0409579. Bibcode:2005A&A...430..165F. doi:10.1051/0004-6361:20041272. S2CID 17804304.
  10. ^ Gatewood, George (July 2008). "Astrometric Studies of Aldebaran, Arcturus, Vega, the Hyades, and Other Regions". The Astronomical Journal. 136 (1): 452–460. Bibcode:2008AJ....136..452G. doi:10.1088/0004-6256/136/1/452.
  11. ^ Farr, Will M.; Pope, Benjamin J. S.; Davies, Guy R.; North, Thomas S. H.; White, Timothy R.; Barrett, Jim W.; Miglio, Andrea; Lund, Mikkel N.; Antoci, Victoria; Fredslund Andersen, Mads; Grundahl, Frank; Huber, Daniel (2018). "Aldebaran b's Temperate Past Uncovered in Planet Search Data". The Astrophysical Journal. 865 (2): L20. arXiv:1802.09812. Bibcode:2018ApJ...865L..20F. doi:10.3847/2041-8213/aadfde. S2CID 56049041.
  12. ^ Hatzes, A. P.; Cochran, W. D.; et al. (2015). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity". Astronomy & Astrophysics. 580: A31. arXiv:1505.03454. Bibcode:2015A&A...580A..31H. doi:10.1051/0004-6361/201425519. S2CID 53324086.
  13. ^ Heiter, U.; Jofré, P.; Gustafsson, B.; Korn, A. J.; Soubiran, C.; Thévenin, F. (2015). "GaiaFGK benchmark stars: Effective temperatures and surface gravities". Astronomy & Astrophysics. 582: A49. arXiv:1506.06095. Bibcode:2015A&A...582A..49H. doi:10.1051/0004-6361/201526319. S2CID 53391939.
  14. ^ Strassmeier, K. G.; Ilyin, I.; Weber, M. (2018). "PEPSI deep spectra. II. Gaia benchmark stars and other M-K standards". Astronomy and Astrophysics. 612: A45. arXiv:1712.06967. Bibcode:2018A&A...612A..45S. doi:10.1051/0004-6361/201731633. S2CID 119244142.
  15. Falkner, David E. (2011). "The Winter Constellations". The Mythology of the Night Sky. Patrick Moore's Practical Astronomy Series. pp. 19–56. doi:10.1007/978-1-4614-0137-7_3. ISBN 978-1-4614-0136-0. S2CID 115168457.
  16. ^ Allen, R.H. (1963). Star Names: Their Lore and Meaning (Reprint ed.). New York, NY: Dover Publications Inc. pp. 385. ISBN 978-0-486-21079-7.
  17. "IAU Catalog of Star Names". Archived from the original on 7 July 2018. Retrieved 28 July 2016.
  18. "IAU Working Group on Star Names (WGSN)". Archived from the original on 30 March 2019. Retrieved 22 May 2016.
  19. Burnham, S.W. (1900). "A General Catalogue of the Double Stars discovered by S. W. Burnham from 1871 to 1899, arranged in order of Right Ascension". Publications of the Yerkes Observatory. 1: 59–60. Bibcode:1900PYerO...1....1B.
  20. ^ Mason, B. D.; et al. (2014). "The Washington Visual Double Star Catalog". The Astronomical Journal. 122 (6): 3466–3471. Bibcode:2001AJ....122.3466M. doi:10.1086/323920.
  21. Terence Dickinson (1998). NightWatch: A Practical Guide to Viewing the Universe. Firefly Books. pp. 56–. ISBN 978-1-55209-302-3. Archived from the original on 2023-01-15. Retrieved 2019-05-09.
  22. Ian Ridpath (28 May 2003). The Monthly Sky Guide. Cambridge University Press. pp. 55–. ISBN 978-1-139-43719-6. Archived from the original on 15 January 2023. Retrieved 9 May 2019.
  23. Joe Rao (2015-09-04). "The Moon Hits a Cosmic Bull's Eye Tonight: How to See It". Space.com. Archived from the original on 2020-06-09. Retrieved 2020-06-09.
  24. Können, G. P.; Meeus, J. (1972). "Occultation series of five stars". Journal of the British Astronomical Association. 82: 431. Bibcode:1972JBAA...82..431K.
  25. White, N. M. (June 1979). "Lunar occultation of the Hyades and diameters of Alpha Tauri and Theta-1 Tauri". The Astronomical Journal. 84: 872–876. Bibcode:1979AJ.....84..872W. doi:10.1086/112489.
  26. Star Maps created using XEphem (2008). "Star Maps". Large Angle and Spectrometric Coronagraph Experiment (LASCO, part of SOHO, the Solar and Heliospheric Observatory). Archived from the original on 2016-11-15. Photo from 2011 Archived 2014-08-31 at the Wayback Machine and from 2012 (with Venus and Mercury) Archived 2014-05-28 at the Wayback Machine
  27. Lynn, W. T. (1885). "Occultation of Aldebaran in the sixth century. – Bliss, Astronomer Royal". The Observatory. 8: 86. Bibcode:1885Obs.....8...86L.
  28. Halley, Edmund (1717). "Considerations on the Change of the Latitudes of Some of the Principal Fixt Stars. By Edmund Halley, R. S. Sec". Philosophical Transactions. 30 (351–363): 736–738. Bibcode:1717RSPT...30..736H. doi:10.1098/rstl.1717.0025. S2CID 186208656.
  29. Burnham, Robert (1978). Burnham's Celestial Handbook: An Observer's Guide to the Universe Beyond the Solar System. Vol. 3. Courier Corporation. p. 1810. ISBN 978-0486236735. Archived from the original on 2023-07-22. Retrieved 2015-07-20.
  30. Freedman, Immanuel (2015). "The Marduk Star Nēbiru". Cuneiform Digital Library Bulletin: 3.
  31. ^ Tomkin, Jocelyn (April 1998). "Once and Future Celestial Kings". Sky and Telescope. 95 (4): 59–63. Bibcode:1998S&T....95d..59T. – based on computations from HIPPARCOS data. (The calculations exclude stars whose distance or proper motion is uncertain.) PDF
  32. ^ Griffin, R. F. (September 1985). "Alpha Tauri CD – A well-known Hyades binary". Publications of the Astronomical Society of the Pacific. 97: 858–859. Bibcode:1985PASP...97..858G. doi:10.1086/131616. ISSN 0004-6280. S2CID 119497415.
  33. Gore, John Ellard (1904). "Stellar Satellites". Studies in astronomy. Chatto & Windus. pp. 107–109. Archived from the original on 2023-07-22. Retrieved 2015-07-21.
  34. Clerke, Agnes Mary (1908). A Popular History of Astronomy During the Nineteenth Century (4th ed.). Adam and Charles Black. pp. 381–382, 385, 406. Archived from the original on 2023-07-22. Retrieved 2020-09-03.
  35. Pease, F. G. (June 1921). "The Angular Diameter of a Bootis by the Interferometer". Publications of the Astronomical Society of the Pacific. 33 (193): 171. Bibcode:1921PASP...33..171P. doi:10.1086/123068.
  36. Sahlholdt, Christian L.; Feltzing, Sofia; Lindegren, Lennart; Church, Ross P. (2019). "Benchmark ages for the Gaia benchmark stars". Monthly Notices of the Royal Astronomical Society. 482 (1): 895. arXiv:1810.02829. Bibcode:2019MNRAS.482..895S. doi:10.1093/mnras/sty2732. S2CID 118930676.
  37. Piau, L; Kervella, P; Dib, S; Hauschildt, P (February 2011). "Surface convection and red-giant radius measurements". Astronomy and Astrophysics. 526: A100. arXiv:1010.3649. Bibcode:2011A&A...526A.100P. doi:10.1051/0004-6361/201014442. S2CID 118533297.
  38. ^ Wasatonic, Rick; Guinan, Edward F. (1997). "Aldebaran: Discovery of Small Amplitude Light Variations". Information Bulletin on Variable Stars. 4480: 1. Bibcode:1997IBVS.4480....1W.
  39. Koen, Chris; Eyer, Laurent (2002). "New periodic variables from the Hipparcos epoch photometry". Monthly Notices of the Royal Astronomical Society. 331 (1): 45. arXiv:astro-ph/0112194. Bibcode:2002MNRAS.331...45K. doi:10.1046/j.1365-8711.2002.05150.x. S2CID 10505995.
  40. Percy, J. R.; Terziev, E. (2011). "Studies of "Irregularity" in Pulsating Red Giants. III. Many More Stars, an Overview, and Some Conclusions". Journal of the American Association of Variable Star Observers (Jaavso). 39 (1): 1. Bibcode:2011JAVSO..39....1P.
  41. ^ Ohnaka, K. (May 2013). "Spatially resolved, high-spectral resolution observation of the K giant Aldebaran in the CO first overtone lines with VLTI/AMBER". Astronomy & Astrophysics. 553: 8. arXiv:1303.4763. Bibcode:2013A&A...553A...3O. doi:10.1051/0004-6361/201321207. S2CID 118314347. A3.
  42. Aurière, M.; et al. (February 2015). "The magnetic fields at the surface of active single G-K giants". Astronomy & Astrophysics. 574: 30. arXiv:1411.6230. Bibcode:2015A&A...574A..90A. doi:10.1051/0004-6361/201424579. S2CID 118504829. A90.
  43. ^ Ayres, Thomas R.; Brown, Alexander; Harper, Graham M. (November 2003). "Buried Alive in the Coronal Graveyard". The Astrophysical Journal. 598 (1): 610–625. Bibcode:2003ApJ...598..610A. doi:10.1086/378699.
  44. Wood, Brian E.; et al. (February 2007). "The Wind-ISM Interaction of alpha Tauri". The Astrophysical Journal. 655 (2): 946–957. Bibcode:2007ApJ...655..946W. doi:10.1086/510404. S2CID 120421147.
  45. ^ Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  46. Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  47. Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  48. Poveda, A.; et al. (April 1994). "Statistical studies of visual double and multiple stars. II. A catalogue of nearby wide binary and multiple systems". Revista Mexicana de Astronomía y Astrofísica. 28 (1): 43–89. Bibcode:1994RMxAA..28...43P.
  49. Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  50. "Alpha Tauri Overview". NASA Exoplanet Archive.
  51. Bidelman, W. P. (1985). "G.P. Kuiper's spectral classifications of proper-motion stars". The Astrophysical Journal Supplement Series. 59: 197. Bibcode:1985ApJS...59..197B. doi:10.1086/191069.
  52. Hatzes, A.; Cochran, W. (1993). "Long-period radial velocity variations in three K giants". The Astrophysical Journal. 413 (1): 339–348. Bibcode:1993ApJ...413..339H. doi:10.1086/173002.
  53. ^ Reichert, Katja (25 March 2019). "Precise radial velocities of giant stars XII. Evidence against the proposed planet Aldebaran b". Astronomy & Astrophysics. A22: 625. arXiv:1903.09157. Bibcode:2019A&A...625A..22R. doi:10.1051/0004-6361/201834028. S2CID 85459692.
  54. Hatzes, A. P.; Cochran, W. D.; et al. (2015). "Long-lived, long-period radial velocity variations in Aldebaran: A planetary companion and stellar activity". Astronomy & Astrophysics. 580: A31. arXiv:1505.03454. Bibcode:2015A&A...580A..31H. doi:10.1051/0004-6361/201425519. S2CID 53324086.
  55. Ridpath, Ian. "Aldebaran, the eye of the bull". Star Tales.
  56. Moser, Mary B.; Marlett, Stephen A. (2005). Comcáac quih yaza quih hant ihíip hac: Diccionario seri-español-inglés (PDF) (in Spanish and English). Hermosillo, Sonora and Mexico City: Universidad de Sonora and Plaza y Valdés Editores. Archived (PDF) from the original on 2022-10-09.
  57. Clarke, Philip A. (2007). Aboriginal People and Their Plants. New South Wales: Rosenberg Publishing Pty Ltd. p. 30. ISBN 9781877058516.
  58. Allen (1963).
  59. Λαμπαδίας. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  60. 陳久金 (2005). 中國星座神話 (in Chinese). 五南圖書出版股份有限公司. ISBN 978-986-7332-25-7. Archived from the original on 2023-07-22. Retrieved 2019-01-09.
  61. "香港太空館 - 研究資源 - 亮星中英對照表" (in Chinese). Hong Kong Space Museum. Archived from the original on 2008-10-25. Retrieved 2019-01-09.
  62. Villegas, Marissa (23 February 2024). "Welcoming Kapuahi, Hawaiian Airlines' first Boeing 787 Dreamliner". Hawaiian Airlines. Retrieved 16 April 2024.
  63. Seow, C. L. (2013). Job 1-21: interpretation and commentary. Illuminations. Grand Rapids, Michigan Cambridge, U.K: William B. Eerdmans Publishing Company. p. 559. ISBN 978-0-8028-4895-6.
  64. Partridge, Jamie (2015-04-30). "Fixed Star Aldebaran". Astrology King. Archived from the original on 2022-05-21. Retrieved 2022-06-27.
  65. Harms, The Encyclopedia Cthulhiana, p. 136.
  66. de Lafayette, Maximilien (2012). Genetic Aliens. From Aldebaran to the Pentagon, Area 51 and Aliens Genetic Laboratories at Dulce Base. Lulu.com. ISBN 978-1300879527.
  67. Van Helsing, Jan (1997). Unternehmen Aldebaran. Kontakte mit Menschen aus einem anderen Sonnensystem [Operation Aldebaran. Contacts with humans from another star system] (in German). Lathen: Ewertlag. ISBN 3-89478-220-X.
  68. Stoll, Axel (2004). Hochtechnologie im Dritten Reich [High Tech in the Third Reich] (in German). Rottenburg: Kopp Verlag. p. 111ff. ISBN 978-3930219858.
  69. Nieto, Michael Martin; Anderson, John D. (January 2007). "Search for a solution of the Pioneer anomaly". Contemporary Physics. 48 (1): 41–54. arXiv:0709.3866. Bibcode:2007ConPh..48...41N. doi:10.1080/00107510701462061. S2CID 6262902.
  70. von Welsbach, Carl A. (1908). "Die Zerlegung des Ytterbiums in seine Elemente". Monatshefte für Chemie. 29 (2): 181–225. doi:10.1007/BF01558944. S2CID 197766399. Archived from the original on 2021-09-21. Retrieved 2021-09-13.
  71. Urbain, G. (1909). "Lutetium und Neoytterbium oder Cassiopeium und Aldebaranium – Erwiderung auf den Artikel des Herrn Auer v. Welsbach". Monatshefte für Chemie. 31 (10): 1. doi:10.1007/BF01530262. S2CID 101825980. Archived from the original on 2021-10-29. Retrieved 2021-09-13.
  72. Emsley, John (2003). Nature's building blocks: an A-Z guide to the elements. Oxford University Press. pp. 492–494. ISBN 978-0-19-850340-8.

External links


Constellation of Taurus
Stars
Bayer
Flamsteed
Variable
HR
HD
Other
Exoplanets
Category
Portals: Categories: