Misplaced Pages

List of Johnson solids

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.

In geometry, polyhedra are three-dimensional objects where points are connected by lines to form polygons. The points, lines, and polygons of a polyhedron are referred to as its vertices, edges, and faces, respectively. A polyhedron is considered to be convex if:

  • The shortest path between any two of its vertices lies either within its interior or on its boundary.
  • None of its faces are coplanar—they do not share the same plane and do not "lie flat".
  • None of its edges are colinear—they are not segments of the same line.

A convex polyhedron whose faces are regular polygons is known as a Johnson solid, or sometimes as a Johnson–Zalgaller solid. Some authors exclude uniform polyhedra from the definition. A uniform polyhedron is a polyhedron in which the faces are regular and they are isogonal; examples include Platonic and Archimedean solids as well as prisms and antiprisms. The Johnson solids are named after American mathematician Norman Johnson (1930–2017), who published a list of 92 such polyhedra in 1966. His conjecture that the list was complete and no other examples existed was proven by Russian-Israeli mathematician Victor Zalgaller (1920–2020) in 1969.

Some of the Johnson solids may be categorized as elementary polyhedra, meaning they cannot be separated by a plane to create two small convex polyhedra with regular faces. The Johnson solids satisfying this criteria are the first six—equilateral square pyramid, pentagonal pyramid, triangular cupola, square cupola, pentagonal cupola, and pentagonal rotunda. The criteria is also satisfied by eleven other Johnson solids, specifically the tridiminished icosahedron, parabidiminished rhombicosidodecahedron, tridiminished rhombicosidodecahedron, snub disphenoid, snub square antiprism, sphenocorona, sphenomegacorona, hebesphenomegacorona, disphenocingulum, bilunabirotunda, and triangular hebesphenorotunda. The rest of the Johnson solids are not elementary, and they are constructed using the first six Johnson solids together with Platonic and Archimedean solids in various processes. Augmentation involves attaching the Johnson solids onto one or more faces of polyhedra, while elongation or gyroelongation involve joining them onto the bases of a prism or antiprism, respectively. Some others are constructed by diminishment, the removal of one of the first six solids from one or more of a polyhedron's faces.

The following table contains the 92 Johnson solids, with edge length a {\displaystyle a} . The table includes the solid's enumeration (denoted as J n {\displaystyle J_{n}} ). It also includes the number of vertices, edges, and faces of each solid, as well as its symmetry group, surface area A {\displaystyle A} , and volume V {\displaystyle V} . Every polyhedron has its own characteristics, including symmetry and measurement. An object is said to have symmetry if there is a transformation that maps it to itself. All of those transformations may be composed in a group, alongside the group's number of elements, known as the order. In two-dimensional space, these transformations include rotating around the center of a polygon and reflecting an object around the perpendicular bisector of a polygon. A polygon that is rotated symmetrically by 360 n {\textstyle {\frac {360^{\circ }}{n}}} is denoted by C n {\displaystyle C_{n}} , a cyclic group of order n {\displaystyle n} ; combining this with the reflection symmetry results in the symmetry of dihedral group D n {\displaystyle D_{n}} of order 2 n {\displaystyle 2n} . In three-dimensional symmetry point groups, the transformations preserving a polyhedron's symmetry include the rotation around the line passing through the base center, known as the axis of symmetry, and the reflection relative to perpendicular planes passing through the bisector of a base, which is known as the pyramidal symmetry C n v {\displaystyle C_{n\mathrm {v} }} of order 2 n {\displaystyle 2n} . The transformation that preserves a polyhedron's symmetry by reflecting it across a horizontal plane is known as the prismatic symmetry D n h {\displaystyle D_{n\mathrm {h} }} of order 4 n {\displaystyle 4n} . The antiprismatic symmetry D n d {\displaystyle D_{n\mathrm {d} }} of order 4 n {\displaystyle 4n} preserves the symmetry by rotating its half bottom and reflection across the horizontal plane. The symmetry group C n h {\displaystyle C_{n\mathrm {h} }} of order 2 n {\displaystyle 2n} preserves the symmetry by rotation around the axis of symmetry and reflection on the horizontal plane; the specific case preserving the symmetry by one full rotation is C 1 h {\displaystyle C_{1\mathrm {h} }} of order 2, often denoted as C s {\displaystyle C_{s}} . The mensuration of polyhedra includes the surface area and volume. An area is a two-dimensional measurement calculated by the product of length and width; for a polyhedron, the surface area is the sum of the areas of all of its faces. A volume is a measurement of a region in three-dimensional space. The volume of a polyhedron may be ascertained in different ways: either through its base and height (like for pyramids and prisms), by slicing it off into pieces and summing their individual volumes, or by finding the root of a polynomial representing the polyhedron.

The 92 Johnson solids
J n {\displaystyle J_{n}} Solid name Image Vertices Edges Faces Symmetry group and its order Surface area and volume
1 Equilateral square pyramid 5 8 5 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 1 + 3 ) a 2 2.7321 a 2 V = 2 6 a 3 0.2357 a 3 {\displaystyle {\begin{aligned}A&=\left(1+{\sqrt {3}}\right)a^{2}\\&\approx 2.7321a^{2}\\V&={\frac {\sqrt {2}}{6}}a^{3}\\&\approx 0.2357a^{3}\end{aligned}}}
2 Pentagonal pyramid 6 10 6 C 5 v {\displaystyle C_{5v}} of order 10 A = a 2 2 5 2 ( 10 + 5 + 75 + 30 5 ) 3.8855 a 2 V = ( 5 + 5 24 ) a 3 0.3015 a 3 {\displaystyle {\begin{aligned}A&={\frac {a^{2}}{2}}{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\\&\approx 3.8855a^{2}\\V&=\left({\frac {5+{\sqrt {5}}}{24}}\right)a^{3}\\&\approx 0.3015a^{3}\end{aligned}}}
3 Triangular cupola 9 15 8 C 3 v {\displaystyle C_{3v}} of order 6 A = ( 3 + 5 3 2 ) a 2 7.3301 a 2 V = ( 5 3 2 ) a 3 1.1785 a 3 {\displaystyle {\begin{aligned}A&=\left(3+{\frac {5{\sqrt {3}}}{2}}\right)a^{2}\\&\approx 7.3301a^{2}\\V&=\left({\frac {5}{3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.1785a^{3}\end{aligned}}}
4 Square cupola 12 20 10 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 7 + 2 2 + 3 ) a 2 11.5605 a 2 V = ( 1 + 2 2 3 ) a 3 1.9428 a 3 {\displaystyle {\begin{aligned}A&=\left(7+2{\sqrt {2}}+{\sqrt {3}}\right)a^{2}\\&\approx 11.5605a^{2}\\V&=\left(1+{\frac {2{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 1.9428a^{3}\end{aligned}}}
5 Pentagonal cupola 15 25 12 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 1 4 ( 20 + 5 3 + 5 ( 145 + 62 5 ) ) ) a 2 16.5798 a 2 V = ( 1 6 ( 5 + 4 5 ) ) a 3 2.3241 a 3 {\displaystyle {\begin{aligned}A&=\left({\frac {1}{4}}\left(20+5{\sqrt {3}}+{\sqrt {5\left(145+62{\sqrt {5}}\right)}}\right)\right)a^{2}\\&\approx 16.5798a^{2}\\V&=\left({\frac {1}{6}}\left(5+4{\sqrt {5}}\right)\right)a^{3}\\&\approx 2.3241a^{3}\end{aligned}}}
6 Pentagonal rotunda 20 35 17 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 1 2 ( 5 3 + 10 ( 65 + 29 5 ) ) ) a 2 22.3472 a 2 V = ( 1 12 ( 45 + 17 5 ) ) a 3 6.9178 a 3 {\displaystyle {\begin{aligned}A&=\left({\frac {1}{2}}\left(5{\sqrt {3}}+{\sqrt {10\left(65+29{\sqrt {5}}\right)}}\right)\right)a^{2}\\&\approx 22.3472a^{2}\\V&=\left({\frac {1}{12}}\left(45+17{\sqrt {5}}\right)\right)a^{3}\\&\approx 6.9178a^{3}\end{aligned}}}
7 Elongated triangular pyramid 7 12 7 C 3 v {\displaystyle C_{3v}} of order 6 A = ( 3 + 3 ) a 2 4.7321 a 2 V = ( 1 12 ( 2 + 3 3 ) ) a 3 0.5509 a 3 {\displaystyle {\begin{aligned}A&=\left(3+{\sqrt {3}}\right)a^{2}\\&\approx 4.7321a^{2}\\V&=\left({\frac {1}{12}}\left({\sqrt {2}}+3{\sqrt {3}}\right)\right)a^{3}\\&\approx 0.5509a^{3}\end{aligned}}}
8 Elongated square pyramid 9 16 9 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 5 + 3 ) a 2 6.7321 a 2 V = ( 1 + 2 6 ) a 3 1.2357 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\sqrt {3}}\right)a^{2}\\&\approx 6.7321a^{2}\\V&=\left(1+{\frac {\sqrt {2}}{6}}\right)a^{3}\\&\approx 1.2357a^{3}\end{aligned}}}
9 Elongated pentagonal pyramid 11 20 11 C 5 v {\displaystyle C_{5v}} of order 10 A = 20 + 5 3 + 25 + 10 5 4 a 2 8.8855 a 2 V = ( 5 + 5 + 6 25 + 10 5 24 ) a 3 2.022 a 3 {\displaystyle {\begin{aligned}A&={\frac {20+5{\sqrt {3}}+{\sqrt {25+10{\sqrt {5}}}}}{4}}a^{2}\\&\approx 8.8855a^{2}\\V&=\left({\frac {5+{\sqrt {5}}+6{\sqrt {25+10{\sqrt {5}}}}}{24}}\right)a^{3}\\&\approx 2.022a^{3}\end{aligned}}}
10 Gyroelongated square pyramid 9 20 13 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 1 + 3 3 ) a 2 6.1962 a 2 V = 1 6 ( 2 + 2 4 + 3 2 ) a 3 1.1927 a 3 {\displaystyle {\begin{aligned}A&=(1+3{\sqrt {3}})a^{2}\\&\approx 6.1962a^{2}\\V&={\frac {1}{6}}\left({\sqrt {2}}+2{\sqrt {4+3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.1927a^{3}\end{aligned}}}
11 Gyroelongated pentagonal pyramid 11 25 16 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 15 3 + 5 ( 5 + 2 5 ) ) a 2 8.2157 a 2 V = 1 24 ( 25 + 9 5 ) a 3 1.8802 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(15{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 8.2157a^{2}\\V&={\frac {1}{24}}\left(25+9{\sqrt {5}}\right)a^{3}\\&\approx 1.8802a^{3}\end{aligned}}}
12 Triangular bipyramid 5 9 6 D 3 h {\displaystyle D_{3h}} of order 12 A = 3 3 2 a 2 2.5981 a 2 V = 2 6 a 3 0.2358 a 3 {\displaystyle {\begin{aligned}A&={\frac {3{\sqrt {3}}}{2}}a^{2}\\&\approx 2.5981a^{2}\\V&={\frac {\sqrt {2}}{6}}a^{3}\\&\approx 0.2358a^{3}\end{aligned}}}
13 Pentagonal bipyramid 7 15 10 D 5 h {\displaystyle D_{5h}} of order 20 A = 5 3 2 a 2 4.3301 a 2 V = 1 12 ( 5 + 5 ) a 3 0.603 a 3 {\displaystyle {\begin{aligned}A&={\frac {5{\sqrt {3}}}{2}}a^{2}\\&\approx 4.3301a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}\right)a^{3}\\&\approx 0.603a^{3}\end{aligned}}}
14 Elongated triangular bipyramid 8 15 9 D 3 h {\displaystyle D_{3h}} of order 12 A = 3 2 ( 2 + 3 ) a 2 5.5981 a 2 V = 1 12 ( 2 2 + 3 3 ) a 3 0.6687 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{2}}\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 5.5981a^{2}\\V&={\frac {1}{12}}\left(2{\sqrt {2}}+3{\sqrt {3}}\right)a^{3}\\&\approx 0.6687a^{3}\end{aligned}}}
15 Elongated square bipyramid 10 20 12 D 4 h {\displaystyle D_{4h}} of order 16 A = 2 ( 2 + 3 ) a 2 7.4641 a 2 V = 1 3 ( 3 + 2 ) a 3 1.4714 a 3 {\displaystyle {\begin{aligned}A&=2\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 7.4641a^{2}\\V&={\frac {1}{3}}\left(3+{\sqrt {2}}\right)a^{3}\\&\approx 1.4714a^{3}\end{aligned}}}
16 Elongated pentagonal bipyramid 12 25 15 D 5 h {\displaystyle D_{5h}} of order 20 A = 5 2 ( 2 + 3 ) a 2 9.3301 a 2 V = 1 12 ( 5 + 5 + 3 5 ( 5 + 2 5 ) ) a 3 2.3235 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(2+{\sqrt {3}}\right)a^{2}\\&\approx 9.3301a^{2}\\V&={\frac {1}{12}}\left(5+{\sqrt {5}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{3}\\&\approx 2.3235a^{3}\end{aligned}}}
17 Gyroelongated square bipyramid 10 24 16 D 4 d {\displaystyle D_{4d}} of order 16 A = 4 3 a 2 6.9282 a 2 V = 1 3 ( 2 + 4 + 3 2 ) a 3 1.4284 a 3 {\displaystyle {\begin{aligned}A&=4{\sqrt {3}}a^{2}\\&\approx 6.9282a^{2}\\V&={\frac {1}{3}}\left({\sqrt {2}}+{\sqrt {4+3{\sqrt {2}}}}\right)a^{3}\\&\approx 1.4284a^{3}\end{aligned}}}
18 Elongated triangular cupola 15 27 14 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 2 ( 18 + 5 3 ) a 2 13.3301 a 2 V = 1 6 ( 5 2 + 9 3 ) a 3 3.7766 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(18+5{\sqrt {3}}\right)a^{2}\\&\approx 13.3301a^{2}\\V&={\frac {1}{6}}\left(5{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.7766a^{3}\end{aligned}}}
19 Elongated square cupola 20 36 18 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 15 + 2 2 + 3 ) a 2 19.5605 a 2 V = ( 3 + 8 2 3 ) a 3 6.7712 a 3 {\displaystyle {\begin{aligned}A&=(15+2{\sqrt {2}}+{\sqrt {3}})a^{2}\\&\approx 19.5605a^{2}\\V&=\left(3+{\frac {8{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 6.7712a^{3}\end{aligned}}}
20 Elongated pentagonal cupola 25 45 22 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 60 + 5 3 + 10 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 26.5798 a 2 V = 1 6 ( 5 + 4 5 + 15 5 + 2 5 ) a 3 10.0183 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+5{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 26.5798a^{2}\\V&={\frac {1}{6}}\left(5+4{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 10.0183a^{3}\end{aligned}}}
21 Elongated pentagonal rotunda 30 55 27 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 2 a 2 ( 20 + 5 3 + 5 5 + 2 5 + 3 5 ( 5 + 2 5 ) ) 32.3472 a 2 V = 1 12 a 3 ( 45 + 17 5 + 30 5 + 2 5 ) 14.612 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}a^{2}\left(20+5{\sqrt {3}}+5{\sqrt {5+2{\sqrt {5}}}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)\\&\approx 32.3472a^{2}\\V&={\frac {1}{12}}a^{3}\left(45+17{\sqrt {5}}+30{\sqrt {5+2{\sqrt {5}}}}\right)\\&\approx 14.612a^{3}\end{aligned}}}
22 Gyroelongated triangular cupola 15 33 20 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 2 ( 6 + 11 3 ) a 2 12.5263 a 2 V = 1 3 61 2 + 18 3 + 30 1 + 3 a 3 3.5161 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(6+11{\sqrt {3}}\right)a^{2}\\&\approx 12.5263a^{2}\\V&={\frac {1}{3}}{\sqrt {{\frac {61}{2}}+18{\sqrt {3}}+30{\sqrt {1+{\sqrt {3}}}}}}a^{3}\\&\approx 3.5161a^{3}\end{aligned}}}
23 Gyroelongated square cupola 20 44 26 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 7 + 2 2 + 5 3 ) a 2 18.4887 a 2 V = ( 1 + 2 3 2 + 2 3 4 + 2 2 + 2 146 + 103 2 ) a 3 6.2108 a 3 {\displaystyle {\begin{aligned}A&=(7+2{\sqrt {2}}+5{\sqrt {3}})a^{2}\\&\approx 18.4887a^{2}\\V&=\left(1+{\frac {2}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}\right)a^{3}\\&\approx 6.2108a^{3}\end{aligned}}}
24 Gyroelongated pentagonal cupola 25 55 32 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 20 + 25 3 + 10 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 25.2400 a 2 V = ( 5 6 + 2 3 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 9.0733 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+25{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 25.2400a^{2}\\V&=\left({\frac {5}{6}}+{\frac {2}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 9.0733a^{3}\end{aligned}}}
25 Gyroelongated pentagonal rotunda 30 65 37 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 2 ( 15 3 + ( 5 + 3 5 ) 5 + 2 5 ) a 2 31.0075 a 2 V = ( 45 12 + 17 12 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 13.6671 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(15{\sqrt {3}}+\left(5+3{\sqrt {5}}\right){\sqrt {5+2{\sqrt {5}}}}\right)a^{2}\\&\approx 31.0075a^{2}\\V&=\left({\frac {45}{12}}+{\frac {17}{12}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 13.6671a^{3}\end{aligned}}}
26 Gyrobifastigium 8 14 8 D 2 d {\displaystyle D_{2d}} of order 8 A = ( 4 + 3 ) a 2 5.7321 a 2 V = ( 3 2 ) a 3 0.866 a 3 {\displaystyle {\begin{aligned}A&=\left(4+{\sqrt {3}}\right)a^{2}\\&\approx 5.7321a^{2}\\V&=\left({\frac {\sqrt {3}}{2}}\right)a^{3}\\&\approx 0.866a^{3}\end{aligned}}}
27 Triangular orthobicupola 12 24 14 D 3 h {\displaystyle D_{3h}} of order 12 A = 2 ( 3 + 3 ) a 2 9.4641 a 2 V = 5 2 3 a 3 2.357 a 3 {\displaystyle {\begin{aligned}A&=2\left(3+{\sqrt {3}}\right)a^{2}\\&\approx 9.4641a^{2}\\V&={\frac {5{\sqrt {2}}}{3}}a^{3}\\&\approx 2.357a^{3}\end{aligned}}}
28 Square orthobicupola 16 32 18 D 4 h {\displaystyle D_{4h}} of order 16 A = 2 ( 5 + 3 ) a 2 13.4641 a 2 V = ( 2 + 4 2 3 ) a 3 3.8856 a 3 {\displaystyle {\begin{aligned}A&=2(5+{\sqrt {3}})a^{2}\\&\approx 13.4641a^{2}\\V&=\left(2+{\frac {4{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 3.8856a^{3}\end{aligned}}}
29 Square gyrobicupola 16 32 18 D 4 d {\displaystyle D_{4d}} of order 16 A = 2 ( 5 + 3 ) a 2 13.4641 a 2 V = ( 2 + 4 2 3 ) a 3 3.8856 a 3 {\displaystyle {\begin{aligned}A&=2(5+{\sqrt {3}})a^{2}\\&\approx 13.4641a^{2}\\V&=\left(2+{\frac {4{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 3.8856a^{3}\end{aligned}}}
30 Pentagonal orthobicupola 20 40 22 D 5 h {\displaystyle D_{5h}} of order 20 A = ( 10 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 17.7711 a 2 V = 1 3 ( 5 + 4 5 ) a 3 4.6481 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 17.7711a^{2}\\V&={\frac {1}{3}}\left(5+4{\sqrt {5}}\right)a^{3}\\&\approx 4.6481a^{3}\end{aligned}}}
31 Pentagonal gyrobicupola 20 40 22 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 10 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 17.7711 a 2 V = 1 3 ( 5 + 4 5 ) a 3 4.6481 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 17.7711a^{2}\\V&={\frac {1}{3}}\left(5+4{\sqrt {5}}\right)a^{3}\\&\approx 4.6481a^{3}\end{aligned}}}
32 Pentagonal orthocupolarotunda 25 50 27 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 5 + 1 4 1900 + 490 5 + 210 75 + 30 5 ) a 2 23.5385 a 2 V = 5 12 ( 11 + 5 5 ) a 3 9.2418 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\frac {1}{4}}{\sqrt {1900+490{\sqrt {5}}+210{\sqrt {75+30{\sqrt {5}}}}}}\right)a^{2}\\&\approx 23.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 9.2418a^{3}\end{aligned}}}
33 Pentagonal gyrocupolarotunda 25 50 27 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 5 + 15 4 3 + 7 4 25 + 10 5 ) a 2 23.5385 a 2 V = 5 12 ( 11 + 5 5 ) a 3 9.2418 a 3 {\displaystyle {\begin{aligned}A&=\left(5+{\frac {15}{4}}{\sqrt {3}}+{\frac {7}{4}}{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 23.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 9.2418a^{3}\end{aligned}}}
34 Pentagonal orthobirotunda 30 60 32 D 5 h {\displaystyle D_{5h}} of order 20 A = ( ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 29.306 a 2 V = 1 6 ( 45 + 17 5 ) a 3 13.8355 a 3 {\displaystyle {\begin{aligned}A&=\left((5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 29.306a^{2}\\V&={\frac {1}{6}}(45+17{\sqrt {5}})a^{3}\\&\approx 13.8355a^{3}\end{aligned}}}
35 Elongated triangular orthobicupola 18 36 20 D 3 h {\displaystyle D_{3h}} of order 12 A = 2 ( 6 + 3 ) a 2 15.4641 a 2 V = ( 5 2 3 + 3 3 2 ) a 3 4.9551 a 3 {\displaystyle {\begin{aligned}A&=2(6+{\sqrt {3}})a^{2}\\&\approx 15.4641a^{2}\\V&=\left({\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 4.9551a^{3}\end{aligned}}}
36 Elongated triangular gyrobicupola 18 36 20 D 3 d {\displaystyle D_{3d}} of order 12 A = 2 ( 6 + 3 ) a 2 15.4641 a 2 V = ( 5 2 3 + 3 3 2 ) a 3 4.9551 a 3 {\displaystyle {\begin{aligned}A&=2(6+{\sqrt {3}})a^{2}\\&\approx 15.4641a^{2}\\V&=\left({\frac {5{\sqrt {2}}}{3}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 4.9551a^{3}\end{aligned}}}
37 Elongated square gyrobicupola 24 48 26 D 4 d {\displaystyle D_{4d}} of order 16 A = 2 ( 9 + 3 ) a 2 21.4641 a 2 V = ( 4 + 10 2 3 ) a 3 8.714 a 3 {\displaystyle {\begin{aligned}A&=2(9+{\sqrt {3}})a^{2}\\&\approx 21.4641a^{2}\\V&=\left(4+{\frac {10{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 8.714a^{3}\end{aligned}}}
38 Elongated pentagonal orthobicupola 30 60 32 D 5 h {\displaystyle D_{5h}} of order 20 A = ( 20 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 27.7711 a 2 V = 1 6 ( 10 + 8 5 + 15 5 + 2 5 ) a 3 12.3423 a 3 {\displaystyle {\begin{aligned}A&=\left(20+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 27.7711a^{2}\\V&={\frac {1}{6}}\left(10+8{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 12.3423a^{3}\end{aligned}}}
39 Elongated pentagonal gyrobicupola 30 60 32 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 20 + 5 2 ( 10 + 5 + 75 + 30 5 ) ) a 2 27.7711 a 2 V = 1 6 ( 10 + 8 5 + 15 5 + 2 5 ) a 3 12.3423 a 3 {\displaystyle {\begin{aligned}A&=\left(20+{\sqrt {{\frac {5}{2}}\left(10+{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 27.7711a^{2}\\V&={\frac {1}{6}}\left(10+8{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 12.3423a^{3}\end{aligned}}}
40 Elongated pentagonal orthocupolarotunda 35 70 37 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 60 + 10 ( 190 + 49 5 + 21 75 + 30 5 ) ) a 2 33.5385 a 2 V = 5 12 ( 11 + 5 5 + 6 5 + 2 5 ) a 3 16.936 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+{\sqrt {10\left(190+49{\sqrt {5}}+21{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 33.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}+6{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 16.936a^{3}\end{aligned}}}
41 Elongated pentagonal gyrocupolarotunda 35 70 37 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 60 + 10 ( 190 + 49 5 + 21 75 + 30 5 ) ) a 2 33.5385 a 2 V = 5 12 ( 11 + 5 5 + 6 5 + 2 5 ) a 3 16.936 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+{\sqrt {10\left(190+49{\sqrt {5}}+21{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 33.5385a^{2}\\V&={\frac {5}{12}}\left(11+5{\sqrt {5}}+6{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 16.936a^{3}\end{aligned}}}
42 Elongated pentagonal orthobirotunda 40 80 42 D 5 h {\displaystyle D_{5h}} of order 20 A = ( 10 + 30 ( 10 + 3 5 + 75 + 30 5 ) ) a 2 39.306 a 2 V = 1 6 ( 45 + 17 5 + 15 5 + 2 5 ) a 3 21.5297 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {30\left(10+3{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 39.306a^{2}\\V&={\frac {1}{6}}\left(45+17{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 21.5297a^{3}\end{aligned}}}
43 Elongated pentagonal gyrobirotunda 40 80 42 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 10 + 30 ( 10 + 3 5 + 75 + 30 5 ) ) a 2 39.306 a 2 V = 1 6 ( 45 + 17 5 + 15 5 + 2 5 ) a 3 21.5297 a 3 {\displaystyle {\begin{aligned}A&=\left(10+{\sqrt {30\left(10+3{\sqrt {5}}+{\sqrt {75+30{\sqrt {5}}}}\right)}}\right)a^{2}\\&\approx 39.306a^{2}\\V&={\frac {1}{6}}\left(45+17{\sqrt {5}}+15{\sqrt {5+2{\sqrt {5}}}}\right)a^{3}\\&\approx 21.5297a^{3}\end{aligned}}}
44 Gyroelongated triangular bicupola 18 42 26 D 3 {\displaystyle D_{3}} of order 6 A = ( 6 + 5 3 ) a 2 14.6603 a 2 V = 2 ( 5 3 + 1 + 3 ) a 3 4.6946 a 3 {\displaystyle {\begin{aligned}A&=\left(6+5{\sqrt {3}}\right)a^{2}\\&\approx 14.6603a^{2}\\V&={\sqrt {2}}\left({\frac {5}{3}}+{\sqrt {1+{\sqrt {3}}}}\right)a^{3}\\&\approx 4.6946a^{3}\end{aligned}}}
45 Gyroelongated square bicupola 24 56 34 D 4 {\displaystyle D_{4}} of order 8 A = ( 10 + 6 3 ) a 2 20.3923 a 2 V = ( 2 + 4 3 2 + 2 3 4 + 2 2 + 2 146 + 103 2 ) a 3 8.1536 a 3 {\displaystyle {\begin{aligned}A&=\left(10+6{\sqrt {3}}\right)a^{2}\\&\approx 20.3923a^{2}\\V&=\left(2+{\frac {4}{3}}{\sqrt {2}}+{\frac {2}{3}}{\sqrt {4+2{\sqrt {2}}+2{\sqrt {146+103{\sqrt {2}}}}}}\right)a^{3}\\&\approx 8.1536a^{3}\end{aligned}}}
46 Gyroelongated pentagonal bicupola 30 70 42 D 5 {\displaystyle D_{5}} of order 10 A = 1 2 ( 20 + 15 3 + 25 + 10 5 ) a 2 26.4313 a 2 V = ( 5 3 + 4 3 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 11.3974 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 26.4313a^{2}\\V&=\left({\frac {5}{3}}+{\frac {4}{3}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 11.3974a^{3}\end{aligned}}}
47 Gyroelongated pentagonal cupolarotunda 35 80 47 C 5 {\displaystyle C_{5}} of order 5 A = 1 4 ( 20 + 35 3 + 7 25 + 10 5 ) a 2 32.1988 a 2 V = ( 55 12 + 25 12 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 15.9911 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+35{\sqrt {3}}+7{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 32.1988a^{2}\\V&=\left({\frac {55}{12}}+{\frac {25}{12}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 15.9911a^{3}\end{aligned}}}
48 Gyroelongated pentagonal birotunda 40 90 52 D 5 {\displaystyle D_{5}} of order 10 A = ( 10 3 + 3 25 + 10 5 ) a 2 37.9662 a 2 V = ( 45 6 + 17 6 5 + 5 6 2 650 + 290 5 2 5 2 ) a 3 20.5848 a 3 {\displaystyle {\begin{aligned}A&=\left(10{\sqrt {3}}+3{\sqrt {25+10{\sqrt {5}}}}\right)a^{2}\\&\approx 37.9662a^{2}\\V&=\left({\frac {45}{6}}+{\frac {17}{6}}{\sqrt {5}}+{\frac {5}{6}}{\sqrt {2{\sqrt {650+290{\sqrt {5}}}}-2{\sqrt {5}}-2}}\right)a^{3}\\&\approx 20.5848a^{3}\end{aligned}}}
49 Augmented triangular prism 7 13 8 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 4 + 3 3 ) a 2 4.5981 a 2 V = 1 12 ( 2 2 + 3 3 ) a 3 0.6687 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}(4+3{\sqrt {3}})a^{2}\\&\approx 4.5981a^{2}\\V&={\frac {1}{12}}(2{\sqrt {2}}+3{\sqrt {3}})a^{3}\\&\approx 0.6687a^{3}\end{aligned}}}
50 Biaugmented triangular prism 8 17 11 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 2 + 5 3 ) a 2 5.3301 a 2 V = 59 144 + 1 6 a 3 0.9044 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}(2+5{\sqrt {3}})a^{2}\\&\approx 5.3301a^{2}\\V&={\sqrt {{\frac {59}{144}}+{\frac {1}{\sqrt {6}}}}}a^{3}\\&\approx 0.9044a^{3}\end{aligned}}}
51 Triaugmented triangular prism 9 21 14 D 3 h {\displaystyle D_{3h}} of order 12 A = 7 3 2 a 2 6.0622 a 2 V = 2 2 + 3 4 a 3 1.1401 a 3 {\displaystyle {\begin{aligned}A&={\frac {7{\sqrt {3}}}{2}}a^{2}\\&\approx 6.0622a^{2}\\V&={\frac {2{\sqrt {2}}+{\sqrt {3}}}{4}}a^{3}\\&\approx 1.1401a^{3}\end{aligned}}}
52 Augmented pentagonal prism 11 19 10 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 8 + 2 3 + 5 ( 5 + 2 5 ) ) a 2 9.173 a 2 V = 1 12 233 + 90 5 + 12 50 + 20 5 a 3 1.9562 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(8+2{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 9.173a^{2}\\V&={\frac {1}{12}}{\sqrt {233+90{\sqrt {5}}+12{\sqrt {50+20{\sqrt {5}}}}}}a^{3}\\&\approx 1.9562a^{3}\end{aligned}}}
53 Biaugmented pentagonal prism 12 23 13 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 a 2 ( 6 + 4 3 + 5 ( 5 + 2 5 ) ) 9.9051 a 2 V = 1 12 a 3 257 + 90 5 + 24 50 + 20 5 2.1919 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}a^{2}\left(6+4{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)\\&\approx 9.9051a^{2}\\V&={\frac {1}{12}}a^{3}{\sqrt {257+90{\sqrt {5}}+24{\sqrt {50+20{\sqrt {5}}}}}}\\&\approx 2.1919a^{3}\end{aligned}}}
54 Augmented hexagonal prism 13 22 11 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 5 + 4 3 ) a 2 11.9282 a 2 V = 1 6 ( 2 + 9 3 ) a 3 2.8338 a 3 {\displaystyle {\begin{aligned}A&=(5+4{\sqrt {3}})a^{2}\\&\approx 11.9282a^{2}\\V&={\frac {1}{6}}\left({\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 2.8338a^{3}\end{aligned}}}
55 Parabiaugmented hexagonal prism 14 26 14 D 2 h {\displaystyle D_{2h}} of order 8 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V = 1 6 ( 2 2 + 9 3 ) a 3 3.0695 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&={\frac {1}{6}}\left(2{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.0695a^{3}\end{aligned}}}
56 Metabiaugmented hexagonal prism 14 26 14 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V = 1 6 ( 2 2 + 9 3 ) a 3 3.0695 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&={\frac {1}{6}}\left(2{\sqrt {2}}+9{\sqrt {3}}\right)a^{3}\\&\approx 3.0695a^{3}\end{aligned}}}
57 Triaugmented hexagonal prism 15 30 17 D 3 h {\displaystyle D_{3h}} of order 12 A = 3 ( 1 + 2 3 ) a 2 13.3923 a 2 V = ( 1 2 + 3 3 2 ) a 3 3.3052 a 3 {\displaystyle {\begin{aligned}A&=3\left(1+2{\sqrt {3}}\right)a^{2}\\&\approx 13.3923a^{2}\\V&=\left({\frac {1}{\sqrt {2}}}+{\frac {3{\sqrt {3}}}{2}}\right)a^{3}\\&\approx 3.3052a^{3}\end{aligned}}}
58 Augmented dodecahedron 21 35 16 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 5 3 + 11 5 ( 5 + 2 5 ) ) a 2 21.0903 a 2 V = 1 24 ( 95 + 43 5 ) a 3 7.9646 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(5{\sqrt {3}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.0903a^{2}\\V&={\frac {1}{24}}\left(95+43{\sqrt {5}}\right)a^{3}\\&\approx 7.9646a^{3}\end{aligned}}}
59 Parabiaugmented dodecahedron 22 40 20 D 5 d {\displaystyle D_{5d}} of order 20 A = 5 2 ( 3 + 5 ( 5 + 2 5 ) ) a 2 21.5349 a 2 V = 1 6 ( 25 + 11 5 ) a 3 8.2661 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.5349a^{2}\\V&={\frac {1}{6}}\left(25+11{\sqrt {5}}\right)a^{3}\\&\approx 8.2661a^{3}\end{aligned}}}
60 Metabiaugmented dodecahedron 22 40 20 C 2 v {\displaystyle C_{2v}} of order 4 A = 5 2 ( 3 + 5 ( 5 + 2 5 ) ) a 2 21.5349 a 2 V = 1 6 ( 25 + 11 5 ) a 3 8.2661 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left({\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.5349a^{2}\\V&={\frac {1}{6}}\left(25+11{\sqrt {5}}\right)a^{3}\\&\approx 8.2661a^{3}\end{aligned}}}
61 Triaugmented dodecahedron 23 45 24 C 3 v {\displaystyle C_{3v}} of order 6 A = 3 4 ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 21.9795 a 2 V = 5 8 ( 7 + 3 5 ) a 3 8.5676 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 21.9795a^{2}\\V&={\frac {5}{8}}\left(7+3{\sqrt {5}}\right)a^{3}\\&\approx 8.5676a^{3}\end{aligned}}}
62 Metabidiminished icosahedron 10 20 12 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 5 3 + 5 ( 5 + 2 5 ) ) a 2 7.7711 a 2 V = 1 6 ( 5 + 2 5 ) a 3 1.5787 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(5{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 7.7711a^{2}\\V&={\frac {1}{6}}\left(5+2{\sqrt {5}}\right)a^{3}\\&\approx 1.5787a^{3}\end{aligned}}}
63 Tridiminished icosahedron 9 15 8 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 7.3265 a 2 V = ( 5 8 + 7 5 24 ) a 3 1.2772 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 7.3265a^{2}\\V&=\left({\frac {5}{8}}+{\frac {7{\sqrt {5}}}{24}}\right)a^{3}\\&\approx 1.2772a^{3}\end{aligned}}}
64 Augmented tridiminished icosahedron 10 18 10 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 7 3 + 3 5 ( 5 + 2 5 ) ) a 2 8.1925 a 2 V = 1 24 ( 15 + 2 2 + 7 5 ) a 3 1.395 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(7{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 8.1925a^{2}\\V&={\frac {1}{24}}\left(15+2{\sqrt {2}}+7{\sqrt {5}}\right)a^{3}\\&\approx 1.395a^{3}\end{aligned}}}
65 Augmented truncated tetrahedron 15 27 14 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 2 ( 6 + 13 3 ) a 2 14.2583 a 2 V = 11 2 2 a 3 3.8891 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(6+13{\sqrt {3}}\right)a^{2}\\&\approx 14.2583a^{2}\\V&={\frac {11}{2{\sqrt {2}}}}a^{3}\\&\approx 3.8891a^{3}\end{aligned}}}
66 Augmented truncated cube 28 48 22 C 4 v {\displaystyle C_{4v}} of order 8 A = ( 15 + 10 2 + 3 3 ) a 2 34.3383 a 2 V = ( 8 + 16 2 3 ) a 3 15.5425 a 3 {\displaystyle {\begin{aligned}A&=(15+10{\sqrt {2}}+3{\sqrt {3}})a^{2}\\&\approx 34.3383a^{2}\\V&=\left(8+{\frac {16{\sqrt {2}}}{3}}\right)a^{3}\\&\approx 15.5425a^{3}\end{aligned}}}
67 Biaugmented truncated cube 32 60 30 D 4 h {\displaystyle D_{4h}} of order 16 A = 2 ( 9 + 4 2 + 2 3 ) a 2 36.2419 a 2 V = ( 9 + 6 2 ) a 3 17.4853 a 3 {\displaystyle {\begin{aligned}A&=2\left(9+4{\sqrt {2}}+2{\sqrt {3}}\right)a^{2}\\&\approx 36.2419a^{2}\\V&=(9+6{\sqrt {2}})a^{3}\\&\approx 17.4853a^{3}\end{aligned}}}
68 Augmented truncated dodecahedron 65 105 42 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 20 + 25 3 + 110 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 102.1821 a 2 V = ( 505 12 + 81 5 4 ) a 3 87.3637 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(20+25{\sqrt {3}}+110{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 102.1821a^{2}\\V&=\left({\frac {505}{12}}+{\frac {81{\sqrt {5}}}{4}}\right)a^{3}\\&\approx 87.3637a^{3}\end{aligned}}}
69 Parabiaugmented truncated dodecahedron 70 120 52 D 5 d {\displaystyle D_{5d}} of order 20 A = 1 2 ( 20 + 15 3 + 50 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 103.3734 a 2 V = 1 12 ( 515 + 251 5 ) a 3 89.6878 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+50{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 103.3734a^{2}\\V&={\frac {1}{12}}\left(515+251{\sqrt {5}}\right)a^{3}\\&\approx 89.6878a^{3}\end{aligned}}}
70 Metabiaugmented truncated dodecahedron 70 120 52 C 2 v {\displaystyle C_{2v}} of order 4 A = 1 2 ( 20 + 15 3 + 50 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 103.3734 a 2 V = 1 12 ( 515 + 251 5 ) a 3 89.6878 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{2}}\left(20+15{\sqrt {3}}+50{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 103.3734a^{2}\\V&={\frac {1}{12}}\left(515+251{\sqrt {5}}\right)a^{3}\\&\approx 89.6878a^{3}\end{aligned}}}
71 Triaugmented truncated dodecahedron 75 135 62 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 60 + 35 3 + 90 5 + 2 5 + 3 5 ( 5 + 2 5 ) ) a 2 104.5648 a 2 V = 7 12 ( 75 + 37 5 ) a 3 92.0118 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+35{\sqrt {3}}+90{\sqrt {5+2{\sqrt {5}}}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 104.5648a^{2}\\V&={\frac {7}{12}}\left(75+37{\sqrt {5}}\right)a^{3}\\&\approx 92.0118a^{3}\end{aligned}}}
72 Gyrate rhombicosidodecahedron 60 120 62 C 5 v {\displaystyle C_{5v}} of order 10 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
73 Parabigyrate rhombicosidodecahedron 60 120 62 D 5 d {\displaystyle D_{5d}} of order 20 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
74 Metabigyrate rhombicosidodecahedron 60 120 62 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
75 Trigyrate rhombicosidodecahedron 60 120 62 C 3 v {\displaystyle C_{3v}} of order 6 A = ( 30 + 5 3 + 3 5 ( 5 + 2 5 ) ) a 2 59.306 a 2 V = ( 20 + 29 5 3 ) a 3 41.6153 a 3 {\displaystyle {\begin{aligned}A&=\left(30+5{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 59.306a^{2}\\V&=\left(20+{\frac {29{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 41.6153a^{3}\end{aligned}}}
76 Diminished rhombicosidodecahedron 55 105 52 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
77 Paragyrate diminished rhombicosidodecahedron 55 105 52 C 5 v {\displaystyle C_{5v}} of order 10 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
78 Metagyrate diminished rhombicosidodecahedron 55 105 52 C s {\displaystyle C_{s}} of order 2 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
79 Bigyrate diminished rhombicosidodecahedron 55 105 52 C s {\displaystyle C_{s}} of order 2 A = 1 4 ( 100 + 15 3 + 10 5 + 2 5 + 11 5 ( 5 + 2 5 ) ) a 2 58.1147 a 2 V = ( 115 6 + 9 5 ) a 3 39.2913 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(100+15{\sqrt {3}}+10{\sqrt {5+2{\sqrt {5}}}}+11{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 58.1147a^{2}\\V&=\left({\frac {115}{6}}+9{\sqrt {5}}\right)a^{3}\\&\approx 39.2913a^{3}\end{aligned}}}
80 Parabidiminished rhombicosidodecahedron 50 90 42 D 5 d {\displaystyle D_{5d}} of order 20 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
81 Metabidiminished rhombicosidodecahedron 50 90 42 C 2 v {\displaystyle C_{2v}} of order 4 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
82 Gyrate bidiminished rhombicosidodecahedron 50 90 42 C s {\displaystyle C_{s}} of order 2 A = 5 2 ( 8 + 3 + 2 5 + 2 5 + 5 ( 5 + 2 5 ) ) a 2 56.9233 a 2 V = 5 3 ( 11 + 5 5 ) a 3 36.9672 a 3 {\displaystyle {\begin{aligned}A&={\frac {5}{2}}\left(8+{\sqrt {3}}+2{\sqrt {5+2{\sqrt {5}}}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 56.9233a^{2}\\V&={\frac {5}{3}}\left(11+5{\sqrt {5}}\right)a^{3}\\&\approx 36.9672a^{3}\end{aligned}}}
83 Tridiminished rhombicosidodecahedron 45 75 32 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 60 + 5 3 + 30 5 + 2 5 + 9 5 ( 5 + 2 5 ) ) a 2 55.732 a 2 V = ( 35 2 + 23 5 3 ) a 3 34.6432 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(60+5{\sqrt {3}}+30{\sqrt {5+2{\sqrt {5}}}}+9{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 55.732a^{2}\\V&=\left({\frac {35}{2}}+{\frac {23{\sqrt {5}}}{3}}\right)a^{3}\\&\approx 34.6432a^{3}\end{aligned}}}
84 Snub disphenoid 8 18 12 D 2 d {\displaystyle D_{2d}} of order 8 A = 3 3 a 2 5.1962 a 2 V 0.8595 a 3 {\displaystyle {\begin{aligned}A&=3{\sqrt {3}}a^{2}\\&\approx 5.1962a^{2}\\V&\approx 0.8595a^{3}\end{aligned}}}
85 Snub square antiprism 16 40 26 D 4 d {\displaystyle D_{4d}} of order 16 A = 2 ( 1 + 3 3 ) a 2 12.3923 a 2 V 3.6012 a 3 {\displaystyle {\begin{aligned}A&=2\left(1+3{\sqrt {3}}\right)a^{2}\\&\approx 12.3923a^{2}\\V&\approx 3.6012a^{3}\end{aligned}}}
86 Sphenocorona 10 22 14 C 2 v {\displaystyle C_{2v}} of order 4 A = ( 2 + 3 3 ) a 2 7.1962 a 2 V = 1 2 a 3 1 + 3 3 2 + 13 + 3 6 1.5154 a 3 {\displaystyle {\begin{aligned}A&=(2+3{\sqrt {3}})a^{2}\\&\approx 7.1962a^{2}\\V&={\frac {1}{2}}a^{3}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}\\&\approx 1.5154a^{3}\end{aligned}}}
87 Augmented sphenocorona 11 26 17 C s {\displaystyle C_{s}} of order 2 A = ( 1 + 4 3 ) a 2 7.9282 a 2 V = 1 2 a 3 1 + 3 3 2 + 13 + 3 6 + 1 3 2 1.7511 a 3 {\displaystyle {\begin{aligned}A&=(1+4{\sqrt {3}})a^{2}\\&\approx 7.9282a^{2}\\V&={\frac {1}{2}}a^{3}{\sqrt {1+3{\sqrt {\frac {3}{2}}}+{\sqrt {13+3{\sqrt {6}}}}}}+{\frac {1}{3{\sqrt {2}}}}\\&\approx 1.7511a^{3}\end{aligned}}}
88 Sphenomegacorona 12 28 18 C 2 v {\displaystyle C_{2v}} of order 4 A = 2 ( 1 + 2 3 ) a 2 8.9282 a 2 V 1.9481 a 3 {\displaystyle {\begin{aligned}A&=2\left(1+2{\sqrt {3}}\right)a^{2}\\&\approx 8.9282a^{2}\\V&\approx 1.9481a^{3}\end{aligned}}}
89 Hebesphenomegacorona 14 33 21 C 2 v {\displaystyle C_{2v}} of order 4 A = 3 2 ( 2 + 3 3 ) a 2 10.7942 a 2 V 2.9129 a 3 {\displaystyle {\begin{aligned}A&={\frac {3}{2}}\left(2+3{\sqrt {3}}\right)a^{2}\\&\approx 10.7942a^{2}\\V&\approx 2.9129a^{3}\end{aligned}}}
90 Disphenocingulum 16 38 24 D 2 d {\displaystyle D_{2d}} of order 8 A = ( 4 + 5 3 ) a 2 12.6603 a 2 V 3.7776 a 3 {\displaystyle {\begin{aligned}A&=(4+5{\sqrt {3}})a^{2}\\&\approx 12.6603a^{2}\\V&\approx 3.7776a^{3}\end{aligned}}}
91 Bilunabirotunda 14 26 14 D 2 h {\displaystyle D_{2h}} of order 8 A = ( 2 + 2 3 + 5 ( 5 + 2 5 ) ) a 2 12.346 a 2 V = 1 12 ( 17 + 9 5 ) a 3 3.0937 a 3 {\displaystyle {\begin{aligned}A&=\left(2+2{\sqrt {3}}+{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 12.346a^{2}\\V&={\frac {1}{12}}\left(17+9{\sqrt {5}}\right)a^{3}\\&\approx 3.0937a^{3}\end{aligned}}}
92 Triangular hebesphenorotunda 18 36 20 C 3 v {\displaystyle C_{3v}} of order 6 A = 1 4 ( 12 + 19 3 + 3 5 ( 5 + 2 5 ) ) a 2 16.3887 a 2 V = ( 5 2 + 7 5 6 ) a 3 5.1087 a 3 {\displaystyle {\begin{aligned}A&={\frac {1}{4}}\left(12+19{\sqrt {3}}+3{\sqrt {5\left(5+2{\sqrt {5}}\right)}}\right)a^{2}\\&\approx 16.3887a^{2}\\V&=\left({\frac {5}{2}}+{\frac {7{\sqrt {5}}}{6}}\right)a^{3}\\&\approx 5.1087a^{3}\end{aligned}}}

References

  1. Meyer (2006), p. 418.
  2. Uehara (2020), p. 62.
  3. Flusser, Suk & Zitofa (2017), p. 126.
  4. Walsh (2014), p. 284.
  5. Parker (1997), p. 264.
  6. Johnson (1966).
  7. Berman (1971).

Bibliography

External links

Johnson solids
Pyramids, cupolae and rotundae
Modified pyramids
Modified cupolae and rotundae
Augmented prisms
Modified Platonic solids
Modified Archimedean solids
Other elementary solids
(See also List of Johnson solids, a sortable table)
Categories: