Misplaced Pages

Sphenomegacorona

Article snapshot taken from Wikipedia with creative commons attribution-sharealike license. Give it a read and then ask your questions in the chat. We can research this topic together.
88th Johnson solid (18 faces)
Sphenomegacorona
TypeJohnson
J87J88J89
Faces16 triangles
2 squares
Edges28
Vertices12
Vertex configuration2(3)
2(3.4)
2x2(3)
4(3.4)
Symmetry groupC2v
Dual polyhedron-
Propertiesconvex, elementary
Net
3D model of a sphenomegacorona

In geometry, the sphenomegacorona is a Johnson solid with 16 equilateral triangles and 2 squares as its faces.

Properties

The sphenomegacorona was named by Johnson (1966) in which he used the prefix spheno- referring to a wedge-like complex formed by two adjacent lunes—a square with equilateral triangles attached on its opposite sides. The suffix -megacorona refers to a crownlike complex of 12 triangles, contrasted with the smaller triangular complex that makes the sphenocorona. By joining both complexes, the resulting polyhedron has 16 equilateral triangles and 2 squares, making 18 faces. All of its faces are regular polygons, categorizing the sphenomegacorona as a Johnson solid—a convex polyhedron in which all of the faces are regular polygons—enumerated as the 88th Johnson solid J 88 {\displaystyle J_{88}} . It is an elementary polyhedron, meaning it cannot be separated by a plane into two small regular-faced polyhedra.

The surface area of a sphenomegacorona A {\displaystyle A} is the total of polygonal faces' area—16 equilateral triangles and 2 squares. The volume of a sphenomegacorona is obtained by finding the root of a polynomial, and its decimal expansion—denoted as ξ {\displaystyle \xi } —is given by A334114. With edge length a {\displaystyle a} , its surface area and volume can be formulated as: A = ( 2 + 4 3 ) a 2 8.928 a 2 , V = ξ a 3 1.948 a 3 . {\displaystyle {\begin{aligned}A&=\left(2+4{\sqrt {3}}\right)a^{2}&\approx 8.928a^{2},\\V&=\xi a^{3}&\approx 1.948a^{3}.\end{aligned}}}

Cartesian coordinates

Let k 0.59463 {\displaystyle k\approx 0.59463} be the smallest positive root of the polynomial 1680 x 16 4800 x 15 3712 x 14 + 17216 x 13 + 1568 x 12 24576 x 11 + 2464 x 10 + 17248 x 9 3384 x 8 5584 x 7 + 2000 x 6 + 240 x 5 776 x 4 + 304 x 3 + 200 x 2 56 x 23. {\displaystyle 1680x^{16}-4800x^{15}-3712x^{14}+17216x^{13}+1568x^{12}-24576x^{11}+2464x^{10}+17248x^{9}-3384x^{8}-5584x^{7}+2000x^{6}+240x^{5}-776x^{4}+304x^{3}+200x^{2}-56x-23.} Then, Cartesian coordinates of a sphenomegacorona with edge length 2 are given by the union of the orbits of the points ( 0 , 1 , 2 1 k 2 ) , ( 2 k , 1 , 0 ) , ( 0 , 3 4 k 2 1 k 2 + 1 , 1 2 k 2 1 k 2 ) , ( 1 , 0 , 2 + 4 k 4 k 2 ) , ( 0 , 3 4 k 2 ( 2 k 2 1 ) ( k 2 1 ) 1 k 2 + 1 , 2 k 4 1 ( 1 k 2 ) 3 2 ) {\displaystyle {\begin{aligned}&\left(0,1,2{\sqrt {1-k^{2}}}\right),\,(2k,1,0),\,\left(0,{\frac {\sqrt {3-4k^{2}}}{\sqrt {1-k^{2}}}}+1,{\frac {1-2k^{2}}{\sqrt {1-k^{2}}}}\right),\\&\left(1,0,-{\sqrt {2+4k-4k^{2}}}\right),\,\left(0,{\frac {{\sqrt {3-4k^{2}}}\left(2k^{2}-1\right)}{\left(k^{2}-1\right){\sqrt {1-k^{2}}}}}+1,{\frac {2k^{4}-1}{\left(1-k^{2}\right)^{\frac {3}{2}}}}\right)\end{aligned}}} under the action of the group generated by reflections about the xz-plane and the yz-plane.

References

  1. Johnson, N. W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics. 18: 169–200. doi:10.4153/cjm-1966-021-8. MR 0185507. S2CID 122006114. Zbl 0132.14603.
  2. ^ Berman, M. (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR 0290245.
  3. Francis, D. (August 2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  4. Cromwell, P. R. (1997). Polyhedra. Cambridge University Press. p. 86–87, 89. ISBN 978-0-521-66405-9.
  5. "A334114". The On-Line Encyclopedia of Integer Sequences. 2020.
  6. Timofeenko, A. V. (2009). "The non-Platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Science. 162 (5): 717. doi:10.1007/s10958-009-9655-0. S2CID 120114341.

External links

Johnson solids
Pyramids, cupolae and rotundae
Modified pyramids
Modified cupolae and rotundae
Augmented prisms
Modified Platonic solids
Modified Archimedean solids
Other elementary solids
(See also List of Johnson solids, a sortable table)
Categories: